已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Unsupervised shape-aware SOM down-sampling for plant point clouds

点云 采样(信号处理) 计算机科学 点(几何) 人工智能 环境科学 遥感 地理 计算机视觉 数学 几何学 滤波器(信号处理)
作者
Dawei Li,Zhaoyi Zhou,Yongchang Wei
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:211: 172-207
标识
DOI:10.1016/j.isprsjprs.2024.03.024
摘要

Observation of the external 3D shape/structure and some measurable phenotypic traits is of great significance to screening excellent varieties and improving crop yield in agriculture. The dense crop point clouds scanned by 3D sensors not only may include imaging noise, but also contain a large number of redundant points that will put high burden on storage and slow down the speed of algorithm for point cloud segmentation, classification, and other following processing steps. To reduce the complexity of point cloud data and meanwhile better represent the structure under limited resources, this paper presents a new Self-organizing Map (SOM)-based down-sampling strategy that is tailored for plant (or plant-like) point clouds. Our SOM-based sampling works in a purely unsupervised manner and precisely controls the number of points after down-sampling. It obtains shape-aware sampling on irregular plant point clouds by automatically encoding preliminary semantics to different organ types (e.g., stems are sampled as "lines", and leaves are sampled as folded curved shaped in "surfaces"). Extensive experiments on a multi-species plant dataset were conducted using several popular deep 3D-segmentation networks as the downstream task unit, respectively. The segmentation performance of the SOM-processed dataset outperformed several other mainstream down-sampling strategies. Our SOM strategy with 1D neuron layer can be further generalized to 2D and 3D versions, and also can be extended to a more adaptive framework that automatically picks the most suitable version of SOM for each corresponding local shape component. The proposed strategy also showed good potential in serving different applications including point cloud skeleton extraction, crop main stem length measurement; and presented satisfactory results on point cloud datasets from other domains, indicating its high applicability and good data domain adaptation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Owen应助超级灰狼采纳,获得10
1秒前
纪震宇发布了新的文献求助10
5秒前
田野发布了新的文献求助10
6秒前
彭于晏应助畅快璎采纳,获得10
6秒前
自信的傲晴完成签到,获得积分10
7秒前
科研通AI2S应助小马采纳,获得10
7秒前
7秒前
jiangjiaodu2024关注了科研通微信公众号
8秒前
今后应助su采纳,获得10
8秒前
潇洒的凡灵完成签到,获得积分10
10秒前
坚强的元菱完成签到 ,获得积分10
10秒前
李健的小迷弟应助kuny采纳,获得10
11秒前
11秒前
julian190完成签到,获得积分10
12秒前
超级灰狼发布了新的文献求助10
12秒前
12秒前
可爱的函函应助田野采纳,获得10
14秒前
西瓜完成签到 ,获得积分10
14秒前
17秒前
17秒前
19秒前
8R60d8应助WSZXQ采纳,获得10
20秒前
满意的芸完成签到 ,获得积分10
20秒前
21秒前
汶南完成签到 ,获得积分10
22秒前
22秒前
23秒前
23秒前
23秒前
24秒前
24秒前
kuny发布了新的文献求助10
25秒前
su发布了新的文献求助10
26秒前
谷安发布了新的文献求助30
29秒前
酷波er应助科研通管家采纳,获得10
29秒前
70应助科研通管家采纳,获得10
29秒前
英俊的铭应助科研通管家采纳,获得10
30秒前
无花果应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3179663
求助须知:如何正确求助?哪些是违规求助? 2830262
关于积分的说明 7975661
捐赠科研通 2491692
什么是DOI,文献DOI怎么找? 1328724
科研通“疑难数据库(出版商)”最低求助积分说明 635561
版权声明 602927