Unsupervised shape-aware SOM down-sampling for plant point clouds

点云 采样(信号处理) 计算机科学 点(几何) 人工智能 环境科学 遥感 地理 计算机视觉 数学 几何学 滤波器(信号处理)
作者
Dawei Li,Zhaoyi Zhou,Yongchang Wei
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:211: 172-207
标识
DOI:10.1016/j.isprsjprs.2024.03.024
摘要

Observation of the external 3D shape/structure and some measurable phenotypic traits is of great significance to screening excellent varieties and improving crop yield in agriculture. The dense crop point clouds scanned by 3D sensors not only may include imaging noise, but also contain a large number of redundant points that will put high burden on storage and slow down the speed of algorithm for point cloud segmentation, classification, and other following processing steps. To reduce the complexity of point cloud data and meanwhile better represent the structure under limited resources, this paper presents a new Self-organizing Map (SOM)-based down-sampling strategy that is tailored for plant (or plant-like) point clouds. Our SOM-based sampling works in a purely unsupervised manner and precisely controls the number of points after down-sampling. It obtains shape-aware sampling on irregular plant point clouds by automatically encoding preliminary semantics to different organ types (e.g., stems are sampled as "lines", and leaves are sampled as folded curved shaped in "surfaces"). Extensive experiments on a multi-species plant dataset were conducted using several popular deep 3D-segmentation networks as the downstream task unit, respectively. The segmentation performance of the SOM-processed dataset outperformed several other mainstream down-sampling strategies. Our SOM strategy with 1D neuron layer can be further generalized to 2D and 3D versions, and also can be extended to a more adaptive framework that automatically picks the most suitable version of SOM for each corresponding local shape component. The proposed strategy also showed good potential in serving different applications including point cloud skeleton extraction, crop main stem length measurement; and presented satisfactory results on point cloud datasets from other domains, indicating its high applicability and good data domain adaptation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
槐序发布了新的文献求助10
1秒前
1秒前
陶醉晓凡关注了科研通微信公众号
2秒前
爱学习的小菜鸡完成签到,获得积分10
3秒前
3秒前
7秒前
取法乎上完成签到 ,获得积分10
7秒前
xiaozheng完成签到,获得积分10
9秒前
情怀应助一朵小鲜花儿采纳,获得10
13秒前
海鲜汤完成签到 ,获得积分10
13秒前
14秒前
19秒前
科研通AI5应助大力的无声采纳,获得10
19秒前
bkagyin应助大力的无声采纳,获得10
19秒前
20秒前
20秒前
20秒前
CodeCraft应助大力的无声采纳,获得10
20秒前
丘比特应助大力的无声采纳,获得10
20秒前
乐乐应助大力的无声采纳,获得10
20秒前
NexusExplorer应助大力的无声采纳,获得10
20秒前
在水一方应助大力的无声采纳,获得10
20秒前
CipherSage应助大力的无声采纳,获得10
20秒前
z7777777完成签到,获得积分10
20秒前
了0完成签到 ,获得积分10
20秒前
寒冷的复天完成签到,获得积分10
21秒前
22秒前
风筝鱼完成签到 ,获得积分10
22秒前
满意冷荷发布了新的文献求助10
23秒前
23秒前
cjjwei完成签到 ,获得积分10
23秒前
CipherSage应助Fanny采纳,获得20
24秒前
科研通AI2S应助小白果果采纳,获得10
24秒前
25秒前
shyの煜完成签到 ,获得积分10
25秒前
27秒前
刘佳佳完成签到 ,获得积分10
28秒前
兴奋觅海完成签到,获得积分10
29秒前
29秒前
cytheria完成签到 ,获得积分10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851