亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised shape-aware SOM down-sampling for plant point clouds

点云 采样(信号处理) 计算机科学 点(几何) 人工智能 环境科学 遥感 地理 计算机视觉 数学 几何学 滤波器(信号处理)
作者
Dawei Li,Zhaoyi Zhou,Yongchang Wei
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:211: 172-207 被引量:3
标识
DOI:10.1016/j.isprsjprs.2024.03.024
摘要

Observation of the external 3D shape/structure and some measurable phenotypic traits is of great significance to screening excellent varieties and improving crop yield in agriculture. The dense crop point clouds scanned by 3D sensors not only may include imaging noise, but also contain a large number of redundant points that will put high burden on storage and slow down the speed of algorithm for point cloud segmentation, classification, and other following processing steps. To reduce the complexity of point cloud data and meanwhile better represent the structure under limited resources, this paper presents a new Self-organizing Map (SOM)-based down-sampling strategy that is tailored for plant (or plant-like) point clouds. Our SOM-based sampling works in a purely unsupervised manner and precisely controls the number of points after down-sampling. It obtains shape-aware sampling on irregular plant point clouds by automatically encoding preliminary semantics to different organ types (e.g., stems are sampled as "lines", and leaves are sampled as folded curved shaped in "surfaces"). Extensive experiments on a multi-species plant dataset were conducted using several popular deep 3D-segmentation networks as the downstream task unit, respectively. The segmentation performance of the SOM-processed dataset outperformed several other mainstream down-sampling strategies. Our SOM strategy with 1D neuron layer can be further generalized to 2D and 3D versions, and also can be extended to a more adaptive framework that automatically picks the most suitable version of SOM for each corresponding local shape component. The proposed strategy also showed good potential in serving different applications including point cloud skeleton extraction, crop main stem length measurement; and presented satisfactory results on point cloud datasets from other domains, indicating its high applicability and good data domain adaptation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
7秒前
桐桐应助111采纳,获得10
12秒前
13秒前
爱听歌凤灵完成签到,获得积分10
15秒前
今日发布了新的文献求助10
18秒前
Lucas应助七色光采纳,获得10
42秒前
充电宝应助彭蓬采纳,获得10
44秒前
Splaink完成签到 ,获得积分10
46秒前
48秒前
51秒前
科研通AI5应助花骨头采纳,获得10
54秒前
今日完成签到,获得积分10
56秒前
蕊蕊应助奥黛丽悟空采纳,获得10
1分钟前
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
111发布了新的文献求助10
1分钟前
1分钟前
Owen应助xuan采纳,获得30
1分钟前
七色光发布了新的文献求助10
1分钟前
科研通AI5应助杭州007采纳,获得30
1分钟前
1分钟前
科研通AI5应助111采纳,获得10
1分钟前
杭州007完成签到,获得积分10
1分钟前
volcano发布了新的文献求助10
1分钟前
九月亦星完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
xuan发布了新的文献求助30
1分钟前
杭州007发布了新的文献求助30
1分钟前
1分钟前
1分钟前
完美世界应助展锋采纳,获得10
1分钟前
蟹治猿完成签到 ,获得积分10
1分钟前
月满西楼完成签到,获得积分10
2分钟前
2分钟前
111发布了新的文献求助10
2分钟前
如意冥茗完成签到 ,获得积分10
2分钟前
IShowSpeed完成签到,获得积分10
2分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5220743
求助须知:如何正确求助?哪些是违规求助? 4394021
关于积分的说明 13680050
捐赠科研通 4256994
什么是DOI,文献DOI怎么找? 2335881
邀请新用户注册赠送积分活动 1333500
关于科研通互助平台的介绍 1287918