糖蛋白组学
轨道轨道
计算生物学
蛋白质组
聚糖
糖肽
质谱法
化学
错误发现率
色谱法
生物化学
生物
糖蛋白
基因
抗生素
作者
Ling Y. Lee,Edward S. X. Moh,Benjamin L. Parker,Marshall Bern,Nicolle H. Packer,Morten Thaysen‐Andersen
标识
DOI:10.1021/acs.jproteome.6b00438
摘要
Advances in software-driven glycopeptide identification have facilitated N-glycoproteomics studies reporting thousands of intact N-glycopeptides, i.e., N-glycan-conjugated peptides, but the automated identification process remains to be scrutinized. Herein, we compare the site-specific glycoprofiling efficiency of the PTM-centric search engine Byonic relative to manual expert annotation utilizing typical glycoproteomics acquisition and data analysis strategies but with a single glycoprotein, the uncharacterized multiple N-glycosylated human basigin. Detailed site-specific reference glycoprofiles of purified basigin were manually established using ion-trap CID-MS/MS and high-resolution Q-Exactive Orbitrap HCD-MS/MS of tryptic N-glycopeptides and released N-glycans. The micro- and macroheterogeneous basigin N-glycosylation was site-specifically glycoprofiled using Byonic with or without a background of complex peptides using Q-Exactive Orbitrap HCD-MS/MS. The automated glycoprofiling efficiencies were assessed against the site-specific reference glycoprofiles and target/decoy proteome databases. Within the limits of this single glycoprotein analysis, the search criteria and confidence thresholds (Byonic scores) recommended by the vendor provided high glycoprofiling accuracy and coverage (both >80%) and low peptide FDRs (<1%). The data complexity, search parameters including search space (proteome/glycome size), mass tolerance and peptide modifications, and confidence thresholds affected the automated glycoprofiling efficiency and analysis time. Correct identification of ambiguous peptide modifications (methionine oxidation/carbamidomethylation) whose mass differences coincide with several monosaccharide mass differences (Fuc/Hex/HexNAc) and of ambiguous isobaric (Hex1NeuAc1-R/Fuc1NeuGc1-R) or near-isobaric (NeuAc1-R/Fuc2-R) monosaccharide subcompositions remains challenging in automated glycoprofiling, arguing particular attention paid to N-glycopeptides displaying such "difficult-to-identify" features. This study provides valuable insights into the automated glycopeptide identification process, stimulating further developments in FDR-based glycoproteomics.
科研通智能强力驱动
Strongly Powered by AbleSci AI