A review of physics-based models in prognostics: Application to gears and bearings of rotating machinery

预言 失效物理学 状态监测 工程类 鉴定(生物学) 状态维修 系统工程 风险分析(工程) 控制工程 可靠性工程 可靠性(半导体) 物理 电气工程 生物 医学 功率(物理) 量子力学 植物
作者
Adrian Cubillo,Suresh Perinpanayagam,Manuel Esperon-Miguez
出处
期刊:Advances in Mechanical Engineering [SAGE]
卷期号:8 (8): 168781401666466-168781401666466 被引量:165
标识
DOI:10.1177/1687814016664660
摘要

Health condition monitoring for rotating machinery has been developed for many years due to its potential to reduce the cost of the maintenance operations and increase availability. Covering aspects include sensors, signal processing, health assessment and decision-making. This article focuses on prognostics based on physics-based models. While the majority of the research in health condition monitoring focuses on data-driven techniques, physics-based techniques are particularly important if accuracy is a critical factor and testing is restricted. Moreover, the benefits of both approaches can be combined when data-driven and physics-based techniques are integrated. This article reviews the concept of physics-based models for prognostics. An overview of common failure modes of rotating machinery is provided along with the most relevant degradation mechanisms. The models available to represent these degradation mechanisms and their application for prognostics are discussed. Models that have not been applied to health condition monitoring, for example, wear due to metal–metal contact in hydrodynamic bearings, are also included due to its potential for health condition monitoring. The main contribution of this article is the identification of potential physics-based models for prognostics in rotating machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jiangnj发布了新的文献求助30
刚刚
samantha完成签到,获得积分10
1秒前
1秒前
俎树同完成签到 ,获得积分10
1秒前
Natsu完成签到,获得积分10
1秒前
马保国123发布了新的文献求助10
2秒前
丘比特应助无限的隶采纳,获得10
2秒前
在云里爱与歌完成签到,获得积分10
3秒前
迟大猫应助研究生采纳,获得10
3秒前
可行完成签到,获得积分10
3秒前
3秒前
yuhui完成签到,获得积分10
3秒前
4秒前
pi发布了新的文献求助10
4秒前
4秒前
小蘑菇应助科研菜鸟采纳,获得10
5秒前
Owen应助晚风采纳,获得10
5秒前
小二郎应助Jiangnj采纳,获得10
5秒前
微信研友完成签到,获得积分10
5秒前
科研通AI5应助陈杰采纳,获得10
5秒前
6秒前
Jasper应助含糊采纳,获得10
6秒前
dfggg发布了新的文献求助10
6秒前
跑在颖发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
yatou5651发布了新的文献求助10
6秒前
7秒前
乐乐应助koi采纳,获得10
7秒前
asdfqwer发布了新的文献求助10
7秒前
7秒前
chemhub完成签到,获得积分10
7秒前
杜杜完成签到,获得积分10
8秒前
周小慧发布了新的文献求助10
8秒前
8秒前
自由寻菱完成签到 ,获得积分10
8秒前
9秒前
Akim应助丘奇采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762