亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A review of physics-based models in prognostics: Application to gears and bearings of rotating machinery

预言 失效物理学 状态监测 工程类 鉴定(生物学) 状态维修 系统工程 风险分析(工程) 控制工程 可靠性工程 可靠性(半导体) 物理 电气工程 生物 医学 功率(物理) 量子力学 植物
作者
Adrian Cubillo,Suresh Perinpanayagam,Manuel Esperon-Miguez
出处
期刊:Advances in Mechanical Engineering [SAGE]
卷期号:8 (8) 被引量:239
标识
DOI:10.1177/1687814016664660
摘要

Health condition monitoring for rotating machinery has been developed for many years due to its potential to reduce the cost of the maintenance operations and increase availability. Covering aspects include sensors, signal processing, health assessment and decision-making. This article focuses on prognostics based on physics-based models. While the majority of the research in health condition monitoring focuses on data-driven techniques, physics-based techniques are particularly important if accuracy is a critical factor and testing is restricted. Moreover, the benefits of both approaches can be combined when data-driven and physics-based techniques are integrated. This article reviews the concept of physics-based models for prognostics. An overview of common failure modes of rotating machinery is provided along with the most relevant degradation mechanisms. The models available to represent these degradation mechanisms and their application for prognostics are discussed. Models that have not been applied to health condition monitoring, for example, wear due to metal–metal contact in hydrodynamic bearings, are also included due to its potential for health condition monitoring. The main contribution of this article is the identification of potential physics-based models for prognostics in rotating machinery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen完成签到,获得积分20
17秒前
zzyuyu完成签到 ,获得积分10
18秒前
18秒前
田様应助活力天蓝采纳,获得10
19秒前
酷波er应助飘逸太英采纳,获得10
24秒前
36秒前
痞老板死磕蟹黄堡完成签到 ,获得积分10
37秒前
活力天蓝发布了新的文献求助10
41秒前
51秒前
zxcvvbb1001完成签到 ,获得积分10
53秒前
53秒前
鱼贝贝完成签到 ,获得积分10
54秒前
komorebi发布了新的文献求助10
57秒前
1分钟前
1分钟前
飘逸太英完成签到,获得积分20
1分钟前
yanifang发布了新的文献求助10
1分钟前
飘逸太英发布了新的文献求助10
1分钟前
Moki完成签到,获得积分10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
1分钟前
赘婿应助wucl1990采纳,获得10
1分钟前
1分钟前
bird发布了新的文献求助10
1分钟前
1分钟前
RW发布了新的文献求助10
1分钟前
1分钟前
bird完成签到,获得积分10
1分钟前
小马甲应助琪琪采纳,获得10
1分钟前
2分钟前
RW完成签到,获得积分10
2分钟前
2分钟前
琪琪发布了新的文献求助10
2分钟前
qq158014169完成签到 ,获得积分10
2分钟前
BowieHuang应助琪琪采纳,获得10
2分钟前
2分钟前
务实鞅完成签到 ,获得积分10
2分钟前
2分钟前
俭朴蜜蜂完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723513
求助须知:如何正确求助?哪些是违规求助? 5278467
关于积分的说明 15298818
捐赠科研通 4871973
什么是DOI,文献DOI怎么找? 2616395
邀请新用户注册赠送积分活动 1566216
关于科研通互助平台的介绍 1523110