A Deep Learning Model for Robust Wafer Fault Monitoring With Sensor Measurement Noise

人工智能 故障检测与隔离 特征提取 模式识别(心理学) 自编码 分类器(UML) 预处理器 噪音(视频) 状态监测 计算机科学 数据预处理 降噪 噪声测量 工程类 电子工程 深度学习 电气工程 图像(数学) 执行机构
作者
Hoyeop Lee,Youngju Kim,Chang Ouk Kim
出处
期刊:IEEE Transactions on Semiconductor Manufacturing [IEEE Computer Society]
卷期号:30 (1): 23-31 被引量:99
标识
DOI:10.1109/tsm.2016.2628865
摘要

Standard fault detection and classification (FDC) models detect wafer faults by extracting features useful for fault detection from time-indexed measurements of the equipment recorded by in situ sensors (sensor signals) and feeding the extracted information into a classifier. However, the preprocessing-and-classification approach often results in the loss of information in the sensor signals that is important for detecting wafer faults. Furthermore, the sensor signals usually contain noise induced by mechanical and electrical disturbances. In this paper, we propose the use of a stacked denoising autoencoder (SdA), which is a deep learning algorithm, to establish an FDC model for simultaneous feature extraction and classification. The SdA model can identify global and invariant features in the sensor signals for fault monitoring and is robust against measurement noise. Through experiments using wafer samples collected from a work-site photolithography tool, we confirmed that as the sensor measurement noise severity increased, the SdA's classification accuracy could be as much as 14% higher than those of the twelve models considered for comparison, each of which employed one of three feature extractors and one of four classifiers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助jing2000yr采纳,获得10
1秒前
1秒前
对苏完成签到,获得积分10
1秒前
2秒前
哲_发布了新的文献求助10
2秒前
心中有淳发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
于禄祥发布了新的文献求助10
4秒前
Billy完成签到,获得积分10
4秒前
4秒前
幸福大白发布了新的文献求助10
5秒前
繁星若塵完成签到,获得积分10
5秒前
labxgr发布了新的文献求助10
5秒前
贰拾发布了新的文献求助10
5秒前
暗器完成签到,获得积分10
5秒前
6秒前
6秒前
威武鸽子发布了新的文献求助10
7秒前
7秒前
8秒前
市区凤姐应助Cary采纳,获得10
8秒前
高帅完成签到,获得积分10
8秒前
段一帆发布了新的文献求助10
8秒前
丫丫发布了新的文献求助10
8秒前
顺利的凡蕾完成签到 ,获得积分10
8秒前
9秒前
可爱的函函应助ST采纳,获得10
9秒前
joker完成签到,获得积分10
9秒前
Ww发布了新的文献求助30
10秒前
su发布了新的文献求助10
10秒前
10秒前
852应助苹果音响采纳,获得30
10秒前
QC完成签到,获得积分10
10秒前
Hello应助STP顶峰相见采纳,获得10
10秒前
呀呀呀呀发布了新的文献求助10
10秒前
pluto应助星川采纳,获得10
11秒前
pluto应助星川采纳,获得10
11秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960721
求助须知:如何正确求助?哪些是违规求助? 3506928
关于积分的说明 11132948
捐赠科研通 3239182
什么是DOI,文献DOI怎么找? 1790081
邀请新用户注册赠送积分活动 872130
科研通“疑难数据库(出版商)”最低求助积分说明 803128