A Deep Learning Model for Robust Wafer Fault Monitoring With Sensor Measurement Noise

人工智能 故障检测与隔离 特征提取 模式识别(心理学) 自编码 分类器(UML) 预处理器 噪音(视频) 状态监测 计算机科学 数据预处理 降噪 噪声测量 工程类 电子工程 深度学习 电气工程 图像(数学) 执行机构
作者
Hoyeop Lee,Youngju Kim,Chang Ouk Kim
出处
期刊:IEEE Transactions on Semiconductor Manufacturing [Institute of Electrical and Electronics Engineers]
卷期号:30 (1): 23-31 被引量:99
标识
DOI:10.1109/tsm.2016.2628865
摘要

Standard fault detection and classification (FDC) models detect wafer faults by extracting features useful for fault detection from time-indexed measurements of the equipment recorded by in situ sensors (sensor signals) and feeding the extracted information into a classifier. However, the preprocessing-and-classification approach often results in the loss of information in the sensor signals that is important for detecting wafer faults. Furthermore, the sensor signals usually contain noise induced by mechanical and electrical disturbances. In this paper, we propose the use of a stacked denoising autoencoder (SdA), which is a deep learning algorithm, to establish an FDC model for simultaneous feature extraction and classification. The SdA model can identify global and invariant features in the sensor signals for fault monitoring and is robust against measurement noise. Through experiments using wafer samples collected from a work-site photolithography tool, we confirmed that as the sensor measurement noise severity increased, the SdA's classification accuracy could be as much as 14% higher than those of the twelve models considered for comparison, each of which employed one of three feature extractors and one of four classifiers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚定迎天完成签到,获得积分10
刚刚
Zzzoey发布了新的文献求助10
1秒前
搜集达人应助小罗飞飞飞采纳,获得10
1秒前
詹卫卫完成签到 ,获得积分10
1秒前
1秒前
宇_发布了新的文献求助20
1秒前
2秒前
esdeath发布了新的文献求助10
2秒前
云轩完成签到,获得积分10
2秒前
2秒前
2秒前
自然乐松发布了新的文献求助10
2秒前
yesir完成签到,获得积分10
3秒前
普雅花的等待完成签到,获得积分10
3秒前
想人陪的以云完成签到,获得积分10
4秒前
科研通AI5应助德德采纳,获得10
4秒前
NexusExplorer应助李来仪采纳,获得10
4秒前
威康宇宙发布了新的文献求助10
4秒前
小蘑菇应助润润轩轩采纳,获得10
4秒前
5秒前
5秒前
个性尔槐发布了新的文献求助10
5秒前
xiangxl完成签到,获得积分10
5秒前
fang完成签到 ,获得积分10
6秒前
汉堡包应助zhui采纳,获得10
6秒前
6秒前
万万完成签到,获得积分10
6秒前
sci完成签到,获得积分10
7秒前
7秒前
科研通AI5应助马静雨采纳,获得50
7秒前
Lucas应助酷炫板凳采纳,获得10
7秒前
7秒前
FFFFFFG完成签到,获得积分10
8秒前
完美世界应助0000采纳,获得30
9秒前
rosexu发布了新的文献求助10
9秒前
爆米花应助sv采纳,获得10
9秒前
9秒前
搞怪网络完成签到,获得积分10
11秒前
11秒前
liudiqiu应助lh采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794