重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A Deep Learning Model for Robust Wafer Fault Monitoring With Sensor Measurement Noise

人工智能 故障检测与隔离 特征提取 模式识别(心理学) 自编码 分类器(UML) 预处理器 噪音(视频) 状态监测 计算机科学 数据预处理 降噪 噪声测量 工程类 电子工程 深度学习 电气工程 执行机构 图像(数学)
作者
Hoyeop Lee,Youngju Kim,Chang Ouk Kim
出处
期刊:IEEE Transactions on Semiconductor Manufacturing [Institute of Electrical and Electronics Engineers]
卷期号:30 (1): 23-31 被引量:99
标识
DOI:10.1109/tsm.2016.2628865
摘要

Standard fault detection and classification (FDC) models detect wafer faults by extracting features useful for fault detection from time-indexed measurements of the equipment recorded by in situ sensors (sensor signals) and feeding the extracted information into a classifier. However, the preprocessing-and-classification approach often results in the loss of information in the sensor signals that is important for detecting wafer faults. Furthermore, the sensor signals usually contain noise induced by mechanical and electrical disturbances. In this paper, we propose the use of a stacked denoising autoencoder (SdA), which is a deep learning algorithm, to establish an FDC model for simultaneous feature extraction and classification. The SdA model can identify global and invariant features in the sensor signals for fault monitoring and is robust against measurement noise. Through experiments using wafer samples collected from a work-site photolithography tool, we confirmed that as the sensor measurement noise severity increased, the SdA's classification accuracy could be as much as 14% higher than those of the twelve models considered for comparison, each of which employed one of three feature extractors and one of four classifiers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小白发布了新的文献求助10
1秒前
2秒前
Jasper应助殷楷霖采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
大意的雪珍完成签到,获得积分10
4秒前
YUAN发布了新的文献求助10
4秒前
颜倾完成签到,获得积分10
5秒前
科研通AI6应助徐徐采纳,获得10
5秒前
qaqa发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
小蘑菇应助小张采纳,获得10
8秒前
丘比特应助treeman采纳,获得10
8秒前
8秒前
kk完成签到 ,获得积分10
9秒前
10秒前
风清扬发布了新的文献求助10
10秒前
Jasper应助Dr.Yang采纳,获得10
12秒前
木一发布了新的文献求助10
12秒前
13秒前
qaqa完成签到,获得积分20
14秒前
14秒前
殷楷霖发布了新的文献求助10
15秒前
彭于晏应助优秀静珊采纳,获得10
17秒前
17秒前
17秒前
科研通AI6应助风清扬采纳,获得30
18秒前
兆渊完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
zz的奇妙冒险完成签到,获得积分10
21秒前
Yun完成签到 ,获得积分10
21秒前
22秒前
23秒前
浮游应助孟琪富采纳,获得10
23秒前
WWWWWll发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467978
求助须知:如何正确求助?哪些是违规求助? 4571531
关于积分的说明 14330478
捐赠科研通 4498059
什么是DOI,文献DOI怎么找? 2464295
邀请新用户注册赠送积分活动 1453038
关于科研通互助平台的介绍 1427737