Development of a Prognostic Survival Algorithm for Patients with Metastatic Spine Disease

列线图 医学 危险系数 内科学 比例危险模型 肿瘤科 转移 算法 生存分析 Boosting(机器学习) 多元分析 外科 癌症 机器学习 置信区间 计算机科学
作者
Nuno Rui Paulino Pereira,Stein J. Janssen,Eva van Dijk,Mitchel B. Harris,Francis J. Hornicek,Marco Ferrone,Joseph H. Schwab
出处
期刊:Journal of Bone and Joint Surgery, American Volume [Journal of Bone and Joint Surgery]
卷期号:98 (21): 1767-1776 被引量:108
标识
DOI:10.2106/jbjs.15.00975
摘要

Background: Current prognostication models for survival estimation in patients with metastatic spine disease lack accuracy. Identifying new risk factors could improve existing models. We assessed factors associated with survival in patients surgically treated for spine metastases, created a classic scoring algorithm, nomogram, and boosting algorithm, and tested the predictive accuracy of the three created algorithms at estimating survival. Methods: We included 649 patients from two tertiary care referral centers in this retrospective study (2002 to 2014). A multivariate Cox model was used to identify factors independently associated with survival. We created a classic scoring system, a nomogram, and a boosting (i.e., machine learning) algorithm and calculated their accuracy by receiver operating characteristic analysis. Results: Older age (hazard ratio [HR], 1.01; p = 0.009), poor performance status (HR, 1.54; p = 0.001), primary cancer type (HR, 1.68; p < 0.001), >1 spine metastasis (HR, 1.32; p = 0.009), lung and/or liver metastasis (HR, 1.35; p = 0.005), brain metastasis (HR, 1.90; p < 0.001), any systemic therapy for cancer prior to a surgical procedure (e.g., chemotherapy, immunotherapy, hormone therapy) (HR, 1.65; p < 0.001), higher white blood-cell count (HR, 1.03; p = 0.002), and lower hemoglobin levels (HR, 0.92; p = 0.009) were independently associated with decreased survival. The boosting algorithm was best at predicting survival on the training data sets (p < 0.001); the nomogram was more reliable at estimating survival on the test data sets, with an accuracy of 0.75 (30 days), 0.73 (90 days), and 0.75 (365 days). Conclusions: We identified risk factors associated with survival that should be considered in prognostication. Performance of the boosting algorithm and nomogram were comparable on the testing data sets. However, the nomogram is easier to apply and therefore more useful to aid surgical decision-making. Level of Evidence: Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
flyfish完成签到,获得积分10
1秒前
bckl888完成签到,获得积分10
1秒前
1秒前
ww发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
ding应助Wanderer采纳,获得10
3秒前
锅包肉爱吃肉完成签到 ,获得积分10
3秒前
HollidayLee完成签到,获得积分10
4秒前
4秒前
默默发布了新的文献求助10
4秒前
zx完成签到,获得积分10
5秒前
王川完成签到,获得积分10
5秒前
bayes111完成签到,获得积分20
5秒前
深情安青应助霍师傅采纳,获得10
6秒前
西鱼发布了新的文献求助10
6秒前
6秒前
Owen应助羊丢丢啊丢丢采纳,获得10
6秒前
旺旺发布了新的文献求助10
7秒前
wangyaofeng发布了新的文献求助10
7秒前
高子懿发布了新的文献求助10
7秒前
Quinn发布了新的文献求助10
7秒前
7秒前
小鹿完成签到,获得积分10
8秒前
c0uVi1完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
茜茜完成签到,获得积分10
8秒前
苹果从菡完成签到,获得积分10
9秒前
zzz发布了新的文献求助10
9秒前
9秒前
情怀应助默默采纳,获得10
9秒前
西鱼完成签到,获得积分10
11秒前
11秒前
fan完成签到,获得积分10
12秒前
宇与鱼完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515