Development of a Prognostic Survival Algorithm for Patients with Metastatic Spine Disease

列线图 医学 危险系数 内科学 比例危险模型 肿瘤科 转移 算法 生存分析 Boosting(机器学习) 多元分析 外科 癌症 机器学习 置信区间 计算机科学
作者
Nuno Rui Paulino Pereira,Stein J. Janssen,Eva van Dijk,Mitchel B. Harris,Francis J. Hornicek,Marco Ferrone,Joseph H. Schwab
出处
期刊:Journal of Bone and Joint Surgery, American Volume [Wolters Kluwer]
卷期号:98 (21): 1767-1776 被引量:108
标识
DOI:10.2106/jbjs.15.00975
摘要

Background: Current prognostication models for survival estimation in patients with metastatic spine disease lack accuracy. Identifying new risk factors could improve existing models. We assessed factors associated with survival in patients surgically treated for spine metastases, created a classic scoring algorithm, nomogram, and boosting algorithm, and tested the predictive accuracy of the three created algorithms at estimating survival. Methods: We included 649 patients from two tertiary care referral centers in this retrospective study (2002 to 2014). A multivariate Cox model was used to identify factors independently associated with survival. We created a classic scoring system, a nomogram, and a boosting (i.e., machine learning) algorithm and calculated their accuracy by receiver operating characteristic analysis. Results: Older age (hazard ratio [HR], 1.01; p = 0.009), poor performance status (HR, 1.54; p = 0.001), primary cancer type (HR, 1.68; p < 0.001), >1 spine metastasis (HR, 1.32; p = 0.009), lung and/or liver metastasis (HR, 1.35; p = 0.005), brain metastasis (HR, 1.90; p < 0.001), any systemic therapy for cancer prior to a surgical procedure (e.g., chemotherapy, immunotherapy, hormone therapy) (HR, 1.65; p < 0.001), higher white blood-cell count (HR, 1.03; p = 0.002), and lower hemoglobin levels (HR, 0.92; p = 0.009) were independently associated with decreased survival. The boosting algorithm was best at predicting survival on the training data sets (p < 0.001); the nomogram was more reliable at estimating survival on the test data sets, with an accuracy of 0.75 (30 days), 0.73 (90 days), and 0.75 (365 days). Conclusions: We identified risk factors associated with survival that should be considered in prognostication. Performance of the boosting algorithm and nomogram were comparable on the testing data sets. However, the nomogram is easier to apply and therefore more useful to aid surgical decision-making. Level of Evidence: Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yznfly应助JPH1990采纳,获得30
1秒前
帅帅大王完成签到,获得积分20
2秒前
Cullen发布了新的文献求助10
2秒前
禅花游鱼完成签到,获得积分10
3秒前
研友_VZG7GZ应助琉璃岁月采纳,获得10
3秒前
小罗在无锡完成签到 ,获得积分10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
光影相生应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
5秒前
5秒前
sanages发布了新的文献求助10
5秒前
5秒前
漫漫发布了新的文献求助10
6秒前
英姑应助科研通管家采纳,获得100
6秒前
微风完成签到,获得积分10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
SHAO应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
凯旋预言完成签到 ,获得积分10
6秒前
核桃应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
SHAO应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
光影相生应助科研通管家采纳,获得10
7秒前
7秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
汉堡包应助王鑫采纳,获得10
8秒前
9秒前
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
核桃应助科研通管家采纳,获得20
9秒前
10秒前
10秒前
小二郎应助wh1t3zZ采纳,获得10
10秒前
小二郎应助高求采纳,获得10
11秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961465
求助须知:如何正确求助?哪些是违规求助? 3507798
关于积分的说明 11138163
捐赠科研通 3240268
什么是DOI,文献DOI怎么找? 1790870
邀请新用户注册赠送积分活动 872609
科研通“疑难数据库(出版商)”最低求助积分说明 803288