Development of a Prognostic Survival Algorithm for Patients with Metastatic Spine Disease

列线图 医学 危险系数 内科学 比例危险模型 肿瘤科 转移 算法 生存分析 Boosting(机器学习) 多元分析 外科 癌症 机器学习 置信区间 计算机科学
作者
Nuno Rui Paulino Pereira,Stein J. Janssen,Eva van Dijk,Mitchel B. Harris,Francis J. Hornicek,Marco Ferrone,Joseph H. Schwab
出处
期刊:Journal of Bone and Joint Surgery, American Volume [Journal of Bone and Joint Surgery]
卷期号:98 (21): 1767-1776 被引量:108
标识
DOI:10.2106/jbjs.15.00975
摘要

Background: Current prognostication models for survival estimation in patients with metastatic spine disease lack accuracy. Identifying new risk factors could improve existing models. We assessed factors associated with survival in patients surgically treated for spine metastases, created a classic scoring algorithm, nomogram, and boosting algorithm, and tested the predictive accuracy of the three created algorithms at estimating survival. Methods: We included 649 patients from two tertiary care referral centers in this retrospective study (2002 to 2014). A multivariate Cox model was used to identify factors independently associated with survival. We created a classic scoring system, a nomogram, and a boosting (i.e., machine learning) algorithm and calculated their accuracy by receiver operating characteristic analysis. Results: Older age (hazard ratio [HR], 1.01; p = 0.009), poor performance status (HR, 1.54; p = 0.001), primary cancer type (HR, 1.68; p < 0.001), >1 spine metastasis (HR, 1.32; p = 0.009), lung and/or liver metastasis (HR, 1.35; p = 0.005), brain metastasis (HR, 1.90; p < 0.001), any systemic therapy for cancer prior to a surgical procedure (e.g., chemotherapy, immunotherapy, hormone therapy) (HR, 1.65; p < 0.001), higher white blood-cell count (HR, 1.03; p = 0.002), and lower hemoglobin levels (HR, 0.92; p = 0.009) were independently associated with decreased survival. The boosting algorithm was best at predicting survival on the training data sets (p < 0.001); the nomogram was more reliable at estimating survival on the test data sets, with an accuracy of 0.75 (30 days), 0.73 (90 days), and 0.75 (365 days). Conclusions: We identified risk factors associated with survival that should be considered in prognostication. Performance of the boosting algorithm and nomogram were comparable on the testing data sets. However, the nomogram is easier to apply and therefore more useful to aid surgical decision-making. Level of Evidence: Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助怡然万声采纳,获得10
刚刚
斯文败类应助王泽坤采纳,获得10
1秒前
紧张的世德完成签到,获得积分10
1秒前
BUTCAT发布了新的文献求助10
1秒前
1秒前
xiaoxu发布了新的文献求助10
2秒前
赘婿应助白鹤卧雪采纳,获得10
2秒前
yyy0202完成签到,获得积分10
2秒前
飘逸凝雁发布了新的文献求助10
2秒前
NexusExplorer应助啊实打实的采纳,获得10
2秒前
奶昔发布了新的文献求助10
3秒前
上官聪展发布了新的文献求助10
3秒前
外向的易蓉完成签到,获得积分10
4秒前
Hedgehog完成签到,获得积分20
4秒前
华仔应助jony采纳,获得10
4秒前
4秒前
duanduan123发布了新的文献求助10
4秒前
提香羽完成签到,获得积分10
4秒前
爆米花应助欣晴采纳,获得10
4秒前
5秒前
烟花应助ha采纳,获得10
5秒前
完美世界应助2424采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
6秒前
mylove应助科研通管家采纳,获得10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得30
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
Stella应助科研通管家采纳,获得10
6秒前
7秒前
mylove应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619177
求助须知:如何正确求助?哪些是违规求助? 4703952
关于积分的说明 14925213
捐赠科研通 4759305
什么是DOI,文献DOI怎么找? 2550439
邀请新用户注册赠送积分活动 1513156
关于科研通互助平台的介绍 1474401