Development of a Prognostic Survival Algorithm for Patients with Metastatic Spine Disease

列线图 医学 危险系数 内科学 比例危险模型 肿瘤科 转移 算法 生存分析 Boosting(机器学习) 多元分析 外科 癌症 机器学习 置信区间 计算机科学
作者
Nuno Rui Paulino Pereira,Stein J. Janssen,Eva van Dijk,Mitchel B. Harris,Francis J. Hornicek,Marco Ferrone,Joseph H. Schwab
出处
期刊:Journal of Bone and Joint Surgery, American Volume [Journal of Bone and Joint Surgery]
卷期号:98 (21): 1767-1776 被引量:108
标识
DOI:10.2106/jbjs.15.00975
摘要

Background: Current prognostication models for survival estimation in patients with metastatic spine disease lack accuracy. Identifying new risk factors could improve existing models. We assessed factors associated with survival in patients surgically treated for spine metastases, created a classic scoring algorithm, nomogram, and boosting algorithm, and tested the predictive accuracy of the three created algorithms at estimating survival. Methods: We included 649 patients from two tertiary care referral centers in this retrospective study (2002 to 2014). A multivariate Cox model was used to identify factors independently associated with survival. We created a classic scoring system, a nomogram, and a boosting (i.e., machine learning) algorithm and calculated their accuracy by receiver operating characteristic analysis. Results: Older age (hazard ratio [HR], 1.01; p = 0.009), poor performance status (HR, 1.54; p = 0.001), primary cancer type (HR, 1.68; p < 0.001), >1 spine metastasis (HR, 1.32; p = 0.009), lung and/or liver metastasis (HR, 1.35; p = 0.005), brain metastasis (HR, 1.90; p < 0.001), any systemic therapy for cancer prior to a surgical procedure (e.g., chemotherapy, immunotherapy, hormone therapy) (HR, 1.65; p < 0.001), higher white blood-cell count (HR, 1.03; p = 0.002), and lower hemoglobin levels (HR, 0.92; p = 0.009) were independently associated with decreased survival. The boosting algorithm was best at predicting survival on the training data sets (p < 0.001); the nomogram was more reliable at estimating survival on the test data sets, with an accuracy of 0.75 (30 days), 0.73 (90 days), and 0.75 (365 days). Conclusions: We identified risk factors associated with survival that should be considered in prognostication. Performance of the boosting algorithm and nomogram were comparable on the testing data sets. However, the nomogram is easier to apply and therefore more useful to aid surgical decision-making. Level of Evidence: Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
2秒前
ad钙发布了新的文献求助10
2秒前
3秒前
Singularity发布了新的文献求助10
3秒前
春临燕发布了新的文献求助10
4秒前
牛马完成签到,获得积分10
4秒前
MIAO发布了新的文献求助10
4秒前
暴躁的衫完成签到,获得积分10
5秒前
斯文汉堡完成签到,获得积分10
5秒前
5秒前
宁远完成签到,获得积分20
6秒前
黄饱饱完成签到,获得积分10
7秒前
7秒前
MIAO发布了新的文献求助10
8秒前
9秒前
拥有八根情丝完成签到,获得积分10
9秒前
albertxin完成签到,获得积分10
9秒前
在水一方应助ad钙采纳,获得10
9秒前
9秒前
852应助彳亍采纳,获得10
9秒前
9秒前
123发布了新的文献求助10
9秒前
谦让觅风发布了新的文献求助80
9秒前
10秒前
orixero应助尤狸子采纳,获得10
10秒前
11秒前
脑洞疼应助宁远采纳,获得10
11秒前
12秒前
和谐白羊发布了新的文献求助30
12秒前
MIAO发布了新的文献求助10
12秒前
高贵的元彤关注了科研通微信公众号
13秒前
13秒前
CipherSage应助cc采纳,获得10
13秒前
13秒前
橘子发布了新的文献求助10
13秒前
xingyu完成签到,获得积分10
13秒前
13秒前
123发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712710
求助须知:如何正确求助?哪些是违规求助? 5211827
关于积分的说明 15268582
捐赠科研通 4864522
什么是DOI,文献DOI怎么找? 2611551
邀请新用户注册赠送积分活动 1561833
关于科研通互助平台的介绍 1519066