Development of a Prognostic Survival Algorithm for Patients with Metastatic Spine Disease

列线图 医学 危险系数 内科学 比例危险模型 肿瘤科 转移 算法 生存分析 Boosting(机器学习) 多元分析 外科 癌症 机器学习 置信区间 计算机科学
作者
Nuno Rui Paulino Pereira,Stein J. Janssen,Eva van Dijk,Mitchel B. Harris,Francis J. Hornicek,Marco Ferrone,Joseph H. Schwab
出处
期刊:Journal of Bone and Joint Surgery, American Volume [Journal of Bone and Joint Surgery]
卷期号:98 (21): 1767-1776 被引量:108
标识
DOI:10.2106/jbjs.15.00975
摘要

Background: Current prognostication models for survival estimation in patients with metastatic spine disease lack accuracy. Identifying new risk factors could improve existing models. We assessed factors associated with survival in patients surgically treated for spine metastases, created a classic scoring algorithm, nomogram, and boosting algorithm, and tested the predictive accuracy of the three created algorithms at estimating survival. Methods: We included 649 patients from two tertiary care referral centers in this retrospective study (2002 to 2014). A multivariate Cox model was used to identify factors independently associated with survival. We created a classic scoring system, a nomogram, and a boosting (i.e., machine learning) algorithm and calculated their accuracy by receiver operating characteristic analysis. Results: Older age (hazard ratio [HR], 1.01; p = 0.009), poor performance status (HR, 1.54; p = 0.001), primary cancer type (HR, 1.68; p < 0.001), >1 spine metastasis (HR, 1.32; p = 0.009), lung and/or liver metastasis (HR, 1.35; p = 0.005), brain metastasis (HR, 1.90; p < 0.001), any systemic therapy for cancer prior to a surgical procedure (e.g., chemotherapy, immunotherapy, hormone therapy) (HR, 1.65; p < 0.001), higher white blood-cell count (HR, 1.03; p = 0.002), and lower hemoglobin levels (HR, 0.92; p = 0.009) were independently associated with decreased survival. The boosting algorithm was best at predicting survival on the training data sets (p < 0.001); the nomogram was more reliable at estimating survival on the test data sets, with an accuracy of 0.75 (30 days), 0.73 (90 days), and 0.75 (365 days). Conclusions: We identified risk factors associated with survival that should be considered in prognostication. Performance of the boosting algorithm and nomogram were comparable on the testing data sets. However, the nomogram is easier to apply and therefore more useful to aid surgical decision-making. Level of Evidence: Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助友好的小鸽子采纳,获得10
刚刚
浮生发布了新的文献求助10
1秒前
大模型应助Marlo采纳,获得10
1秒前
大大哈哈发布了新的文献求助10
1秒前
aaabbb发布了新的文献求助10
1秒前
yexu完成签到,获得积分10
2秒前
JJJJJin发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
李健的小迷弟应助meng采纳,获得10
4秒前
SciGPT应助华仔采纳,获得10
5秒前
浮游应助Fantacy采纳,获得10
5秒前
结果诠释过往完成签到 ,获得积分10
6秒前
7秒前
7秒前
耳放完成签到,获得积分20
7秒前
8秒前
Messi发布了新的文献求助10
8秒前
努力努力再努力完成签到,获得积分10
9秒前
一位科研苟完成签到,获得积分10
9秒前
思源应助忧心的飞雪采纳,获得10
9秒前
9秒前
星辰大海应助紧张的毛衣采纳,获得10
10秒前
10秒前
胡天硕完成签到,获得积分10
10秒前
11秒前
我是第一名完成签到,获得积分10
11秒前
科研小子发布了新的文献求助10
11秒前
酷波er应助zz采纳,获得10
11秒前
11秒前
万能图书馆应助红油曲奇采纳,获得10
12秒前
我爱紫丁香应助江南采纳,获得30
12秒前
princess完成签到,获得积分20
12秒前
TYJ发布了新的文献求助10
12秒前
郝薇薇薇薇儿完成签到,获得积分10
13秒前
Nervous发布了新的文献求助10
13秒前
14秒前
14秒前
麦兜发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648206
求助须知:如何正确求助?哪些是违规求助? 4775141
关于积分的说明 15043236
捐赠科研通 4807251
什么是DOI,文献DOI怎么找? 2570608
邀请新用户注册赠送积分活动 1527392
关于科研通互助平台的介绍 1486407