清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development of a Prognostic Survival Algorithm for Patients with Metastatic Spine Disease

列线图 医学 危险系数 内科学 比例危险模型 肿瘤科 转移 算法 生存分析 Boosting(机器学习) 多元分析 外科 癌症 机器学习 置信区间 计算机科学
作者
Nuno Rui Paulino Pereira,Stein J. Janssen,Eva van Dijk,Mitchel B. Harris,Francis J. Hornicek,Marco Ferrone,Joseph H. Schwab
出处
期刊:Journal of Bone and Joint Surgery, American Volume [Journal of Bone and Joint Surgery]
卷期号:98 (21): 1767-1776 被引量:108
标识
DOI:10.2106/jbjs.15.00975
摘要

Background: Current prognostication models for survival estimation in patients with metastatic spine disease lack accuracy. Identifying new risk factors could improve existing models. We assessed factors associated with survival in patients surgically treated for spine metastases, created a classic scoring algorithm, nomogram, and boosting algorithm, and tested the predictive accuracy of the three created algorithms at estimating survival. Methods: We included 649 patients from two tertiary care referral centers in this retrospective study (2002 to 2014). A multivariate Cox model was used to identify factors independently associated with survival. We created a classic scoring system, a nomogram, and a boosting (i.e., machine learning) algorithm and calculated their accuracy by receiver operating characteristic analysis. Results: Older age (hazard ratio [HR], 1.01; p = 0.009), poor performance status (HR, 1.54; p = 0.001), primary cancer type (HR, 1.68; p < 0.001), >1 spine metastasis (HR, 1.32; p = 0.009), lung and/or liver metastasis (HR, 1.35; p = 0.005), brain metastasis (HR, 1.90; p < 0.001), any systemic therapy for cancer prior to a surgical procedure (e.g., chemotherapy, immunotherapy, hormone therapy) (HR, 1.65; p < 0.001), higher white blood-cell count (HR, 1.03; p = 0.002), and lower hemoglobin levels (HR, 0.92; p = 0.009) were independently associated with decreased survival. The boosting algorithm was best at predicting survival on the training data sets (p < 0.001); the nomogram was more reliable at estimating survival on the test data sets, with an accuracy of 0.75 (30 days), 0.73 (90 days), and 0.75 (365 days). Conclusions: We identified risk factors associated with survival that should be considered in prognostication. Performance of the boosting algorithm and nomogram were comparable on the testing data sets. However, the nomogram is easier to apply and therefore more useful to aid surgical decision-making. Level of Evidence: Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心夏旋完成签到 ,获得积分10
9秒前
小阿博发布了新的文献求助10
11秒前
18秒前
天天快乐应助小阿博采纳,获得10
20秒前
yufanhui应助舒羽采纳,获得10
22秒前
aleilei完成签到 ,获得积分10
32秒前
8R60d8应助舒羽采纳,获得10
40秒前
Judy完成签到 ,获得积分0
42秒前
zeannezg完成签到 ,获得积分10
42秒前
碗碗豆喵完成签到 ,获得积分10
59秒前
59秒前
充电宝应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
yy完成签到 ,获得积分10
1分钟前
睡觉完成签到 ,获得积分10
1分钟前
1分钟前
隐形曼青应助nano采纳,获得10
1分钟前
细心的如天完成签到 ,获得积分10
1分钟前
1分钟前
小阿博发布了新的文献求助10
1分钟前
搜集达人应助小阿博采纳,获得10
1分钟前
zcydbttj2011完成签到 ,获得积分10
1分钟前
1分钟前
nano发布了新的文献求助10
1分钟前
Shandongdaxiu完成签到 ,获得积分10
2分钟前
outbed完成签到,获得积分10
2分钟前
迅速的念芹完成签到 ,获得积分10
2分钟前
outbed发布了新的文献求助60
2分钟前
Woke完成签到 ,获得积分10
2分钟前
2分钟前
回首不再是少年完成签到,获得积分0
2分钟前
小阿博发布了新的文献求助10
2分钟前
苏州九龙小7完成签到 ,获得积分10
2分钟前
2分钟前
橘子海完成签到 ,获得积分10
2分钟前
naczx完成签到,获得积分0
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
SciGPT应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得30
3分钟前
zhubin完成签到 ,获得积分10
3分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311249
求助须知:如何正确求助?哪些是违规求助? 2943948
关于积分的说明 8516785
捐赠科研通 2619328
什么是DOI,文献DOI怎么找? 1432227
科研通“疑难数据库(出版商)”最低求助积分说明 664536
邀请新用户注册赠送积分活动 649815