化学
质子
粉末衍射
结晶学
单晶
无水的
电导率
微晶
Crystal(编程语言)
物理化学
有机化学
计算机科学
量子力学
物理
程序设计语言
作者
Yong‐Sheng Wei,Xiao Hu,Zhen Han,Xi‐Yan Dong,Shuang‐Quan Zang,Thomas C. W. Mak
摘要
Recently, research on metal-organic frameworks (MOFs) serving as a new type of proton conductive material has resulted in many exciting achievements. However, direct observation of a well-established proton-transfer mechanism still remains challenging in MOFs and other crystalline compounds, let alone other conductive materials. Herein we report the solvothermal synthesis of a new proton-conducting MOF, (Me2NH2)[Eu(L)] (H4L = 5-(phosphonomethyl)isophthalic acid). The compound consists of a layered anionic framework [Eu(L)]- and interlayer-embedded counter cations (Me2NH2)+, which interact with adjacent uncoordinated O atoms of phosphonate groups to form strongly (N-H···O) hydrogen-bonded chains aligned parallel to the c-axis. Facile proton transfer along these chains endows the compound with single-crystal anhydrous conductivity of 1.25 × 10-3 S·cm-1 at 150 °C, and water-assisted proton conductivity for a compacted pellet of microcrystalline crystals attains 3.76 × 10-3 S·cm-1 at 100 °C and 98% relative humidity (RH). Proton dynamics (vibrating and transfer) within N-H···O chains of the compound are directly observed using a combination of anisotropic conductivity measurements and control experiments using large single-crystals and pelletized samples, in situ variable-temperature characterization techniques including powder X-ray diffraction (PXRD), single-crystal X-ray diffraction (SCXRD), diffuse reflectance infrared Fourier transform spectrum (DRIFTS), and variable-temperature photoluminescence. In particular, a scarce single-crystal to single-crystal (SCSC) transformation accompanied by proton transfer between an anionic structure (Me2NH2)[Eu(L)] and an identical neutral framework [Eu(HL)] has been identified.
科研通智能强力驱动
Strongly Powered by AbleSci AI