Excellent performance for water purification achieved by activated porous boron nitride nanosheets

吸附 氮化硼 材料科学 化学工程 纳米材料 金属 腐蚀 掺杂剂 兴奋剂 无机化学 纳米技术 化学 有机化学 冶金 光电子学 工程类
作者
Jie Li,Peng Jin,Wei Dai,Chuanhui Wang,Rui Li,Tian Wu,Chengchun Tang
出处
期刊:Materials Chemistry and Physics [Elsevier]
卷期号:196: 186-193 被引量:71
标识
DOI:10.1016/j.matchemphys.2017.02.049
摘要

Adsorption represents an efficient and economical approach for water purification. Strong efforts have been made to try new adsorption materials. In this study, activated oxygen-rich porous boron nitride nanosheets (OBNNSs) containing abundant BO bonds and boron atom vacancies were facilely synthesized via simple two-step method. Different from the conventional doping and activation methods, the oxygen dopants and boron atom vacancies in OBNNSs mainly originate from the starting materials and are introduced in situ and chemical activation during the product formation. OBNNSs exhibit high adsorption capacity and adsorption rate for metallic ions due to its unique polarity of BO bonds and boron atom vacancies, surpassing the bulk and activated BN as well as many common adsorbents. Their critical role in the strong adsorption ability of OBNNSs was validated by theoretical calculations. Additionally, the two-dimensional nanostructure of OBNNSs makes most of the BO bonds and boron atom vacancies expose on the surface ((002) plane) and further enhances the adsorption performance. Moreover, the used OBNNSs can be readily regenerated by acidic elution due to the super anti-oxidation, corrosion resistance, and structural stability. Bearing both a high removal efficiency for water pollutants, especially different toxic metallic irons (Pb2+, Cr3+, and Hg2+), and excellent reusability, OBNNSs are very promising nanomaterials for water purification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
SandyH完成签到,获得积分10
刚刚
Jack完成签到,获得积分10
刚刚
白露完成签到 ,获得积分10
刚刚
Owen应助默默柚子采纳,获得10
1秒前
1秒前
隐形的易巧完成签到 ,获得积分10
1秒前
2秒前
Ava应助Autoimmune采纳,获得10
2秒前
科研通AI5应助多变的卡宾采纳,获得10
2秒前
Citrus发布了新的文献求助10
3秒前
科目三应助莉莉采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
惠惠发布了新的文献求助10
4秒前
深夜看文献的小刘完成签到,获得积分10
4秒前
菊菊发布了新的文献求助10
4秒前
4秒前
猪猪发布了新的文献求助10
5秒前
胖豆发布了新的文献求助10
5秒前
巴啦啦能量完成签到 ,获得积分10
5秒前
6秒前
完美凝海发布了新的文献求助30
6秒前
科研菜鸟发布了新的文献求助10
6秒前
升学顺利身体健康完成签到,获得积分10
7秒前
7秒前
爱学习发布了新的文献求助10
7秒前
cc发布了新的文献求助10
8秒前
533完成签到,获得积分20
8秒前
科研通AI5应助yx采纳,获得10
8秒前
9秒前
koi发布了新的文献求助10
9秒前
浦肯野应助湖月照我影采纳,获得30
9秒前
9秒前
陈博士完成签到,获得积分10
10秒前
Citrus完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762