荧光粉
发光二极管
材料科学
固态照明
纳米技术
工程物理
光电子学
工程类
作者
Zhiguo Xia,Quanlin Liu
标识
DOI:10.1016/j.pmatsci.2016.09.007
摘要
Phosphor materials enable the optical frequency conversion to realize the full-color white emission light-emitting diodes (LEDs). So far much effort has been devoted to the design and discovery of novel LED phosphors for solid state lighting. In this review, firstly, we briefly describe several representative families of LED phosphors. Secondly, we propose the design methodology aimed at discovery of new phosphors with focus on the crystal structural considerations. Thirdly, we review the results of our work and other researchers on the recent advances in discovery and structural design of LED phosphors that exemplify the adopted strategies, including (1) design of the novel phosphors from the existed structural models, (2) discovery of novel phosphors from new crystal materials by doping and (3) structural modification of the known phosphors. The importance on the structure-property relations and recently reported methodologies involved in the crystal chemistry analysis for the discovery of LED phosphors, including mineral-inspired structural model design, exploratory crystal growth via single particle diagnostic approach, chemical unit cosubstitution, and so on, have been summarized in this review. We finally discuss the topics of structure-related active investigations and future opportunities for new and improved host materials for the color conversion applied in LEDs.
科研通智能强力驱动
Strongly Powered by AbleSci AI