Random-Walker-Based Collaborative Learning for Hyperspectral Image Classification

高光谱成像 计算机科学 模式识别(心理学) 人工智能 分类器(UML) 上下文图像分类 正确性 训练集 数据集 图像分割 分割 图像(数学) 算法
作者
Bin Sun,Xudong Kang,Shutao Li,Jón Atli Benediktsson
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:55 (1): 212-222 被引量:59
标识
DOI:10.1109/tgrs.2016.2604290
摘要

Active learning (AL) and semisupervised learning (SSL) are both promising solutions to hyperspectral image classification. Given a few initial labeled samples, this work combines AL and SSL in a novel manner, aiming to obtain more manually labeled and pseudolabeled samples and use them together with the initial labeled samples to improve the classification performance. First, based on a comparison of the segmentation and spectral-spatial classification results obtained by random walker (RW) and extended RW (ERW) algorithms, the unlabeled samples are separated into two different sets, i.e., low- and high-confidence unlabeled data sets. For the high-confidence unlabeled data, pseudolabeling is performed, which can ensure the correctness and informativeness of the pseudolabeled samples. For the low-confidence unlabeled data, AL is used to select samples. In this way, the samples which are more effective for improvement of classification performance can be labeled in only a few iterations. Finally, with the learned training set and the original hyperspectral image as inputs, the ERW classifier is used to obtain the final classification result. Experiments performed on three real hyperspectral data sets show that the proposed method can achieve competitive classification accuracy even with a very limited number of manually labeled samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗄巧发布了新的文献求助10
1秒前
热心市民小红花应助lxl98采纳,获得10
1秒前
aaa完成签到,获得积分10
2秒前
李爱国应助SEM小菜鸡采纳,获得30
4秒前
4秒前
NexusExplorer应助852采纳,获得10
4秒前
qidong完成签到,获得积分10
5秒前
大脑袋应助liars采纳,获得30
6秒前
XXJ发布了新的文献求助10
6秒前
6秒前
是萱萱鸭完成签到,获得积分10
8秒前
香蕉觅云应助迷人问兰采纳,获得10
8秒前
Archer完成签到,获得积分20
8秒前
9秒前
10秒前
蜗牛发布了新的文献求助10
10秒前
11秒前
无私的芹应助无情人达采纳,获得10
11秒前
11秒前
11秒前
12秒前
小二郎应助要减肥小小采纳,获得10
12秒前
14秒前
无限的笑容完成签到,获得积分10
14秒前
随便打发布了新的文献求助10
15秒前
15秒前
wenxian发布了新的文献求助10
16秒前
炼丹发布了新的文献求助10
16秒前
微笑采文完成签到,获得积分10
16秒前
VV完成签到,获得积分10
16秒前
17秒前
yui发布了新的文献求助10
17秒前
17秒前
小马甲应助木头人采纳,获得20
17秒前
18秒前
18秒前
18秒前
ttnnn完成签到,获得积分10
18秒前
hyl发布了新的文献求助10
18秒前
俭朴兔子发布了新的文献求助10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952180
求助须知:如何正确求助?哪些是违规求助? 3497683
关于积分的说明 11088472
捐赠科研通 3228269
什么是DOI,文献DOI怎么找? 1784720
邀请新用户注册赠送积分活动 868875
科研通“疑难数据库(出版商)”最低求助积分说明 801281