已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TRIM Family Proteins: Roles in Autophagy, Immunity, and Carcinogenesis

自噬 泛素连接酶 生物 泛素 先天免疫系统 细胞生物学 蛋白酶体 修剪 癌变 癌症 免疫系统 遗传学 细胞凋亡 基因 计算机科学 操作系统
作者
Shigetsugu Hatakeyama
出处
期刊:Trends in Biochemical Sciences [Elsevier]
卷期号:42 (4): 297-311 被引量:809
标识
DOI:10.1016/j.tibs.2017.01.002
摘要

Ubiquitination is catalyzed by the E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzymes, and E3 ubiquitin ligases, which are a critical component directly responsible for substrate recognition. Tripartite motif (TRIM) proteins, more than 80 being present in humans, are defined as a subfamily of the RING-type E3 ubiquitin ligase family. In autophagy several TRIM proteins function as platforms for the assembly of autophagy regulators and recognize targets such as ubiquitinated cargos via sequestosome-1-like receptors. Some TRIM proteins positively or negatively control many regulators including pattern recognition receptors, intracellular signal transducers and transcription factors in innate immunity. TRIM proteins are involved in a broad range of oncogenic processes including transcriptional regulation, cell proliferation, apoptosis, DNA repair, and metastasis. Tripartite motif (TRIM) family proteins, most of which have E3 ubiquitin ligase activities, have various functions in cellular processes including intracellular signaling, development, apoptosis, protein quality control, innate immunity, autophagy, and carcinogenesis. The ubiquitin system is one of the systems for post-translational modifications, which play crucial roles not only as markers for degradation of target proteins by the proteasome but also as regulators of protein–protein interactions and of the activation of enzymes. Accumulating evidence has shown that TRIM family proteins have unique, important roles and that their dysregulation causes several diseases classified as cancer, immunological disease, or developmental disorders. In this review we focus on recent emerging topics on TRIM proteins in the regulation of autophagy, innate immunity, and carcinogenesis. Tripartite motif (TRIM) family proteins, most of which have E3 ubiquitin ligase activities, have various functions in cellular processes including intracellular signaling, development, apoptosis, protein quality control, innate immunity, autophagy, and carcinogenesis. The ubiquitin system is one of the systems for post-translational modifications, which play crucial roles not only as markers for degradation of target proteins by the proteasome but also as regulators of protein–protein interactions and of the activation of enzymes. Accumulating evidence has shown that TRIM family proteins have unique, important roles and that their dysregulation causes several diseases classified as cancer, immunological disease, or developmental disorders. In this review we focus on recent emerging topics on TRIM proteins in the regulation of autophagy, innate immunity, and carcinogenesis. an enzyme in the first step of the ubiquitin-conjugation reaction. E1 activates ubiquitin by adenylation with ATP and the carboxyl group of ubiquitin and by linking the carboxy-terminal glycine of ubiquitin to the sulfhydryl side chain moiety of a cysteine of E1. an enzyme that has a core catalytic domain required for transferring ubiquitin from E1 and forms a thioester bond with ubiquitin via the sulfhydryl side chain moiety of a cysteine of E2 itself. an enzyme that performs the conjugation of ubiquitin to a lysine on a target protein through an isopeptide bond in collaboration with an E2 ubiquitin-conjugating enzyme. E3 ubiquitin ligase recognizes specific protein substrates and is involved in several types of polyubiquitination using seven amino groups of lysine or the amino-terminal methionine of ubiquitin. a protein complex for polyubiquitin-mediated degradation that functions in the nucleus and cytoplasm. The proteasome is present in Archaebacteria and all eukaryotes. a structural domain of zinc-finger-type proteins that has a Cys3HisCys4 or Cys3His2Cys3 amino acid motif containing two zinc ions. This protein domain usually has approximately 40–60 amino acids. Proteins containing a RING-finger domain generally play a role in E3 ubiquitin ligase activity. a protein structure comprising a RING-finger domain, a B1-box and/or a B2-box domain, and a coiled-coil region. a small protein that contains 76 amino acids and is highly conserved among eukaryotic species. Ubiquitin on target proteins plays roles as a marker for proteasome-mediated degradation and as a marker for endocytosis, DNA repair, and enzymatic activation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在路上完成签到 ,获得积分10
1秒前
LOST完成签到 ,获得积分10
2秒前
yxh完成签到 ,获得积分10
2秒前
2秒前
动人的向松完成签到 ,获得积分10
4秒前
不可以虫鸣吗我是大聪明完成签到 ,获得积分10
5秒前
郜不正完成签到,获得积分10
6秒前
舒心小海豚完成签到 ,获得积分10
7秒前
7秒前
7秒前
kenti2023完成签到 ,获得积分10
8秒前
Ni发布了新的文献求助10
11秒前
hh完成签到 ,获得积分10
12秒前
CR7发布了新的文献求助10
13秒前
15秒前
16秒前
陶醉的蜜蜂完成签到 ,获得积分10
17秒前
大树完成签到 ,获得积分10
18秒前
棠真完成签到 ,获得积分0
18秒前
Ni完成签到 ,获得积分20
19秒前
U87完成签到,获得积分10
20秒前
111完成签到 ,获得积分10
20秒前
CR7完成签到,获得积分10
20秒前
ROC发布了新的文献求助10
21秒前
郑zheng完成签到 ,获得积分10
23秒前
GingerF应助科研通管家采纳,获得50
25秒前
研友_VZG7GZ应助科研通管家采纳,获得10
25秒前
今后应助科研通管家采纳,获得10
25秒前
烟花应助科研通管家采纳,获得20
25秒前
充电宝应助科研通管家采纳,获得10
25秒前
Orange应助科研通管家采纳,获得10
25秒前
Owen应助牛哥采纳,获得10
25秒前
斯文败类应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
shanmao完成签到,获得积分10
25秒前
FashionBoy应助wise111采纳,获得10
27秒前
Sharif318完成签到,获得积分10
29秒前
爆米花应助Dragonfln采纳,获得10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356201
求助须知:如何正确求助?哪些是违规求助? 4488058
关于积分的说明 13971574
捐赠科研通 4388833
什么是DOI,文献DOI怎么找? 2411257
邀请新用户注册赠送积分活动 1403802
关于科研通互助平台的介绍 1377590