亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TRIM Family Proteins: Roles in Autophagy, Immunity, and Carcinogenesis

自噬 泛素连接酶 生物 泛素 先天免疫系统 细胞生物学 蛋白酶体 修剪 癌变 癌症 免疫系统 遗传学 细胞凋亡 基因 计算机科学 操作系统
作者
Shigetsugu Hatakeyama
出处
期刊:Trends in Biochemical Sciences [Elsevier BV]
卷期号:42 (4): 297-311 被引量:768
标识
DOI:10.1016/j.tibs.2017.01.002
摘要

Ubiquitination is catalyzed by the E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzymes, and E3 ubiquitin ligases, which are a critical component directly responsible for substrate recognition. Tripartite motif (TRIM) proteins, more than 80 being present in humans, are defined as a subfamily of the RING-type E3 ubiquitin ligase family. In autophagy several TRIM proteins function as platforms for the assembly of autophagy regulators and recognize targets such as ubiquitinated cargos via sequestosome-1-like receptors. Some TRIM proteins positively or negatively control many regulators including pattern recognition receptors, intracellular signal transducers and transcription factors in innate immunity. TRIM proteins are involved in a broad range of oncogenic processes including transcriptional regulation, cell proliferation, apoptosis, DNA repair, and metastasis. Tripartite motif (TRIM) family proteins, most of which have E3 ubiquitin ligase activities, have various functions in cellular processes including intracellular signaling, development, apoptosis, protein quality control, innate immunity, autophagy, and carcinogenesis. The ubiquitin system is one of the systems for post-translational modifications, which play crucial roles not only as markers for degradation of target proteins by the proteasome but also as regulators of protein–protein interactions and of the activation of enzymes. Accumulating evidence has shown that TRIM family proteins have unique, important roles and that their dysregulation causes several diseases classified as cancer, immunological disease, or developmental disorders. In this review we focus on recent emerging topics on TRIM proteins in the regulation of autophagy, innate immunity, and carcinogenesis. Tripartite motif (TRIM) family proteins, most of which have E3 ubiquitin ligase activities, have various functions in cellular processes including intracellular signaling, development, apoptosis, protein quality control, innate immunity, autophagy, and carcinogenesis. The ubiquitin system is one of the systems for post-translational modifications, which play crucial roles not only as markers for degradation of target proteins by the proteasome but also as regulators of protein–protein interactions and of the activation of enzymes. Accumulating evidence has shown that TRIM family proteins have unique, important roles and that their dysregulation causes several diseases classified as cancer, immunological disease, or developmental disorders. In this review we focus on recent emerging topics on TRIM proteins in the regulation of autophagy, innate immunity, and carcinogenesis. an enzyme in the first step of the ubiquitin-conjugation reaction. E1 activates ubiquitin by adenylation with ATP and the carboxyl group of ubiquitin and by linking the carboxy-terminal glycine of ubiquitin to the sulfhydryl side chain moiety of a cysteine of E1. an enzyme that has a core catalytic domain required for transferring ubiquitin from E1 and forms a thioester bond with ubiquitin via the sulfhydryl side chain moiety of a cysteine of E2 itself. an enzyme that performs the conjugation of ubiquitin to a lysine on a target protein through an isopeptide bond in collaboration with an E2 ubiquitin-conjugating enzyme. E3 ubiquitin ligase recognizes specific protein substrates and is involved in several types of polyubiquitination using seven amino groups of lysine or the amino-terminal methionine of ubiquitin. a protein complex for polyubiquitin-mediated degradation that functions in the nucleus and cytoplasm. The proteasome is present in Archaebacteria and all eukaryotes. a structural domain of zinc-finger-type proteins that has a Cys3HisCys4 or Cys3His2Cys3 amino acid motif containing two zinc ions. This protein domain usually has approximately 40–60 amino acids. Proteins containing a RING-finger domain generally play a role in E3 ubiquitin ligase activity. a protein structure comprising a RING-finger domain, a B1-box and/or a B2-box domain, and a coiled-coil region. a small protein that contains 76 amino acids and is highly conserved among eukaryotic species. Ubiquitin on target proteins plays roles as a marker for proteasome-mediated degradation and as a marker for endocytosis, DNA repair, and enzymatic activation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葛力发布了新的文献求助10
1秒前
彩色的紫丝完成签到 ,获得积分10
3秒前
fangyifang完成签到,获得积分10
9秒前
xxx完成签到,获得积分20
12秒前
16秒前
16秒前
xxx发布了新的文献求助20
17秒前
Tethys完成签到 ,获得积分10
17秒前
22秒前
Akim应助大方研究生采纳,获得10
30秒前
35秒前
孙雁哝发布了新的文献求助10
35秒前
yx_cheng应助科研通管家采纳,获得10
36秒前
深情安青应助科研通管家采纳,获得10
36秒前
Orange应助qyn1234566采纳,获得10
39秒前
小飞飞发布了新的文献求助10
41秒前
49秒前
羊白玉完成签到 ,获得积分10
52秒前
充电宝应助wyx采纳,获得10
54秒前
万能图书馆应助小飞飞采纳,获得10
56秒前
暖暖完成签到,获得积分10
56秒前
孙雁哝完成签到,获得积分10
57秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
wyx发布了新的文献求助10
1分钟前
1分钟前
菲菲酱完成签到 ,获得积分10
2分钟前
RAIN发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助30
2分钟前
MLS8620应助aa采纳,获得10
2分钟前
HuiHui完成签到,获得积分10
2分钟前
李健应助RAIN采纳,获得10
2分钟前
yx_cheng应助科研通管家采纳,获得10
2分钟前
打打应助科研通管家采纳,获得10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
自然芷文完成签到,获得积分10
2分钟前
雨过天晴完成签到,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008109
求助须知:如何正确求助?哪些是违规求助? 3547893
关于积分的说明 11298611
捐赠科研通 3282850
什么是DOI,文献DOI怎么找? 1810216
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188