蒸腾作用
蒸汽压差
生物
特质
农学
作物
农业
产量(工程)
耐旱性
用水效率
生态学
植物
光合作用
灌溉
计算机科学
冶金
材料科学
程序设计语言
作者
Thomas R. Sinclair,Mura Jyostna Devi,Avat Shekoofa,Sunita Choudhary,Walid Sadok,Vincent Vadez,Mandeep K. Riar,Thomas W. Rufty
出处
期刊:Plant Science
[Elsevier]
日期:2017-07-01
卷期号:260: 109-118
被引量:114
标识
DOI:10.1016/j.plantsci.2017.04.007
摘要
Water deficit under nearly all field conditions is the major constraint on plant yields. Other than empirical observations, very little progress has been made in developing crop plants in which specific physiological traits for drought are expressed. As a consequence, there was little known about under what conditions and to what extent drought impacts crop yield. However, there has been rapid progress in recent years in understanding and developing a limited-transpiration trait under elevated atmospheric vapor pressure deficit to increase plant growth and yield under water-deficit conditions. This review paper examines the physiological basis for the limited-transpiration trait as result of low plant hydraulic conductivity, which appears to be related to aquaporin activity. Methodology was developed based on aquaporin involvement to identify candidate genotypes for drought tolerance of several major crop species. Cultivars of maize and soybean are now being marketed specifically for arid conditions. Understanding the mechanism of the limited-transpiration trait has allowed a geospatial analyses to define the environments in which increased yield responses can be expected. This review highlights the challenges and approaches to finally develop physiological traits contributing directly to plant improvement for water-limited environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI