执行机构
软机器人
机器人学
模块化设计
机器人
控制器(灌溉)
弯曲
微控制器
控制系统
工程类
控制工程
计算机科学
人工智能
计算机硬件
电气工程
操作系统
生物
电信
农学
作者
Giada Gerboni,Alessandro Diodato,Gastone Ciuti,Matteo Cianchetti,Arianna Menciassi
出处
期刊:IEEE-ASME Transactions on Mechatronics
[Institute of Electrical and Electronics Engineers]
日期:2017-08-01
卷期号:22 (4): 1881-1888
被引量:170
标识
DOI:10.1109/tmech.2017.2699677
摘要
Soft robotics is an emerging field that takes advantage of compliant materials and makes use of nonstandard actuators. Flexible fluid actuators (FFAs) use fluid pressure to produce high deformation of elastomeric-based structures. However, closed-loop control of such actuators is still very challenging due to the lack of robust, reliable, and inexpensive sensors that can be integrated onto highly deformable actuator structures, involving very low cost materials and manufacturing. This paper presents a systematic approach to implement the feedback control of FFA-based soft robotic bending modules by using commercial flex bend sensors. A flex bend sensor detects the module curvature in one direction, and its response is processed by an on board microcontroller and sent to the central control system. Such sensor integration enables the closed-loop control of modular robotic architectures, often used in soft robotics. Once integrated with the soft module, the sensor response was calibrated by the use of a ground truth electro-magnetic tracking system in order to characterize its behavior when combined with the relative FFA. A feedback control using a low-pass filter and a proportional-integral controller was designed and used to evaluate the dynamic response and the position accuracy of the integrated module. With such closed-loop control, the module tip is positioned with less than 1 mm accuracy, which can be considered a relevant result in the soft robotics field.
科研通智能强力驱动
Strongly Powered by AbleSci AI