作者
Faiyaz Notta,Michelle Chan‐Seng‐Yue,Mathieu Lemire,Yilong Li,Gavin W. Wilson,Ashton A. Connor,Robert E. Denroche,Sheng-Ben Liang,Andrew Brown,Jaeseung Kim,Tao Wang,Jared T. Simpson,Timothy Beck,Ayelet Borgida,Nicholas Buchner,Dianne Chadwick,Sara Hafezi‐Bakhtiari,John E. Dick,Lawrence E. Heisler,Michael A. Hollingsworth,Emin Ibrahimov,Gun Ho Jang,Jeremy Johns,Lars Jorgensen,Calvin Law,Olga Ludkovski,Ilinca M. Lungu,K.T. Ng,Danielle Pasternack,Gloria M. Petersen,Liran I. Shlush,Lee E. Timms,Ming‐Sound Tsao,Julie M. Wilson,Christina K. Yung,George Zogopoulos,John M.S. Bartlett,Ludmil B. Alexandrov,Francisco X. Real,Sean P. Cleary,Michael H. A. Roehrl,John D. McPherson,Lincoln Stein,Thomas J. Hudson,Peter J. Campbell,Steven Gallinger
摘要
Pancreatic cancer is not caused by a specific series of genetic alterations that occur sequentially but by one, or few, catastrophic events that result in simultaneous oncogenic genetic rearrangements, giving rise to highly aggressive tumours. Pancreatic cancer is a highly aggressive tumour type. With a view to examining the evolution of rapid tumour progression in this cancer, this paper presents an analysis of more than a hundred tumour-enriched whole-genome sequences from primary and metastatic pancreas cancers obtained from collaborating hospitals in Canada and the United States of America. Challenging a traditional model of progressive evolution based on ordered mutations in several genes, the authors find support for a role of complex rearrangements and chromothripsis in pancreatic cancer progression, which suggests that the genomic instability that marks this cancer may be explained by a punctuated equilibrium model. Pancreatic cancer, a highly aggressive tumour type with uniformly poor prognosis, exemplifies the classically held view of stepwise cancer development1. The current model of tumorigenesis, based on analyses of precursor lesions, termed pancreatic intraepithelial neoplasm (PanINs) lesions, makes two predictions: first, that pancreatic cancer develops through a particular sequence of genetic alterations2,3,4,5 (KRAS, followed by CDKN2A, then TP53 and SMAD4); and second, that the evolutionary trajectory of pancreatic cancer progression is gradual because each alteration is acquired independently. A shortcoming of this model is that clonally expanded precursor lesions do not always belong to the tumour lineage2,5,6,7,8,9, indicating that the evolutionary trajectory of the tumour lineage and precursor lesions can be divergent. This prevailing model of tumorigenesis has contributed to the clinical notion that pancreatic cancer evolves slowly and presents at a late stage10. However, the propensity for this disease to rapidly metastasize and the inability to improve patient outcomes, despite efforts aimed at early detection11, suggest that pancreatic cancer progression is not gradual. Here, using newly developed informatics tools, we tracked changes in DNA copy number and their associated rearrangements in tumour-enriched genomes and found that pancreatic cancer tumorigenesis is neither gradual nor follows the accepted mutation order. Two-thirds of tumours harbour complex rearrangement patterns associated with mitotic errors, consistent with punctuated equilibrium as the principal evolutionary trajectory12. In a subset of cases, the consequence of such errors is the simultaneous, rather than sequential, knockout of canonical preneoplastic genetic drivers that are likely to set-off invasive cancer growth. These findings challenge the current progression model of pancreatic cancer and provide insights into the mutational processes that give rise to these aggressive tumours.