Robust Dynamic Multi-Objective Vehicle Routing Optimization Method

稳健性(进化) 车辆路径问题 计算机科学 粒子群优化 燃料效率 布线(电子设计自动化) 稳健优化 群体行为 数学优化 工程类 汽车工程 计算机网络 算法 基因 人工智能 生物化学 数学 化学
作者
Yinan Guo,Jianwei Cheng,Sha Luo,Dunwei Gong,Yu Xue
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:15 (6): 1891-1903 被引量:130
标识
DOI:10.1109/tcbb.2017.2685320
摘要

For dynamic multi-objective vehicle routing problems, the waiting time of vehicle, the number of serving vehicles, and the total distance of routes were normally considered as the optimization objectives. Except for the above objectives, fuel consumption that leads to the environmental pollution and energy consumption was focused on in this paper. Considering the vehicles' load and the driving distance, a corresponding carbon emission model was built and set as an optimization objective. Dynamic multi-objective vehicle routing problems with hard time windows and randomly appeared dynamic customers, subsequently, were modeled. In existing planning methods, when the new service demand came up, global vehicle routing optimization method was triggered to find the optimal routes for non-served customers, which was time-consuming. Therefore, a robust dynamic multi-objective vehicle routing method with two-phase is proposed . Three highlights of the novel method are: (i) After finding optimal robust virtual routes for all customers by adopting multi-objective particle swarm optimization in the first phase, static vehicle routes for static customers are formed by removing all dynamic customers from robust virtual routes in next phase. (ii) The dynamically appeared customers append to be served according to their service time and the vehicles' statues. Global vehicle routing optimization is triggered only when no suitable locations can be found for dynamic customers. (iii) A metric measuring the algorithms robustness is given. The statistical results indicated that the routes obtained by the proposed method have better stability and robustness, but may be sub-optimum. Moreover, time-consuming global vehicle routing optimization is avoided as dynamic customers appear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助马上毕业采纳,获得10
1秒前
1秒前
周舟发布了新的文献求助10
2秒前
AATRAHASIS完成签到,获得积分10
2秒前
历史真相发布了新的文献求助10
2秒前
龙卷风完成签到,获得积分10
2秒前
3秒前
3秒前
星星发布了新的文献求助10
4秒前
香蕉觅云应助曹操采纳,获得10
4秒前
大模型应助李恒宇采纳,获得10
5秒前
5秒前
6秒前
pidan发布了新的文献求助30
6秒前
加减乘除发布了新的文献求助10
8秒前
细腻亦巧发布了新的文献求助10
8秒前
科研通AI2S应助跑快点采纳,获得10
9秒前
9秒前
程志杰应助阿翼采纳,获得10
9秒前
舒适笑容发布了新的文献求助10
10秒前
XIGUA完成签到,获得积分10
11秒前
12秒前
honda发布了新的文献求助10
12秒前
小马甲应助陈文文采纳,获得10
12秒前
13秒前
liuz发布了新的文献求助10
13秒前
14秒前
17秒前
咻咻给冰川川的求助进行了留言
17秒前
马上毕业发布了新的文献求助10
18秒前
李健应助honda采纳,获得10
18秒前
Owen应助问问采纳,获得30
18秒前
一进实验室就犯困完成签到,获得积分10
18秒前
打打应助舒适笑容采纳,获得10
19秒前
酷酷的凤凤完成签到,获得积分10
19秒前
bigboss发布了新的文献求助10
19秒前
细腻亦巧完成签到,获得积分10
19秒前
Ava应助jane采纳,获得10
20秒前
21秒前
隐形曼青应助lzw123456采纳,获得10
21秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262967
求助须知:如何正确求助?哪些是违规求助? 2903657
关于积分的说明 8326071
捐赠科研通 2573529
什么是DOI,文献DOI怎么找? 1398397
科研通“疑难数据库(出版商)”最低求助积分说明 654153
邀请新用户注册赠送积分活动 632707