Trial-by-trial data analysis using computational models

计算机科学
作者
Nathaniel D. Daw
出处
期刊:Oxford University Press eBooks [Oxford University Press]
卷期号:: 3-38 被引量:429
标识
DOI:10.1093/acprof:oso/9780199600434.003.0001
摘要

In numerous and high-profile studies, researchers have recently begun to integrate computational models into the analysis of data from experiments on reward learning and decision making (Platt and Glimcher, 1999; O’Doherty et al., 2003; Sugrue et al., 2004; Barraclough et al., 2004; Samejima et al., 2005; Daw et al., 2006; Li et al., 2006; Frank et al., 2007; Tom et al., 2007; Kable and Glimcher, 2007; Lohrenz et al., 2007; Schonberg et al., 2007; Wittmann et al., 2008; Hare et al., 2008; Hampton et al., 2008; Plassmann et al., 2008). As these techniques are spreading rapidly, but have been developed and documented somewhat sporadically alongside the studies themselves, the present review aims to clarify the toolbox (see also O’Doherty et al., 2007). In particular, we discuss the rationale for these methods and the questions they are suited to address. We then offer a relatively practical tutorial about the basic statistical methods for their answer and how they can be applied to data analysis. The techniques are illustrated with fits of simple models to simulated datasets. Throughout, we flag interpretational and technical pitfalls of which we believe authors, reviewers, and readers should be aware. We focus on cataloging the particular, admittedly somewhat idiosyncratic, combination of techniques frequently used in this literature, but also on exposing these techniques as instances of a general set of tools that can be applied to analyze behavioral and neural data of many sorts. A number of other reviews (Daw and Doya, 2006; Dayan and Niv, 2008) have focused on the scientific conclusions that have been obtained with these methods, an issue we omit almost entirely here. There are also excellent books that cover statistical inference of this general sort with much greater generality, formal precision, and detail (MacKay, 2003; Gelman et al., 2004; Bishop, 2006; Gelman and Hill, 2007).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻心锁发布了新的文献求助10
刚刚
2秒前
热心市民完成签到 ,获得积分10
2秒前
WLWLW举报舟渡求助涉嫌违规
2秒前
5秒前
橄榄囚徒完成签到 ,获得积分0
8秒前
仗剑走天涯完成签到 ,获得积分10
8秒前
AURORA98发布了新的文献求助10
9秒前
涛1完成签到 ,获得积分10
14秒前
何兴棠完成签到,获得积分10
15秒前
hjyylab应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
aging00发布了新的文献求助10
16秒前
gdgd完成签到,获得积分10
16秒前
可达鸭完成签到 ,获得积分10
18秒前
WLWLW举报雯十七求助涉嫌违规
19秒前
吉吉完成签到 ,获得积分10
21秒前
今天开心吗完成签到 ,获得积分10
22秒前
23秒前
Freelover完成签到,获得积分10
24秒前
1111完成签到,获得积分10
25秒前
研友_VZGVzn完成签到,获得积分10
26秒前
热心的芙蓉完成签到 ,获得积分10
27秒前
Hello应助虚幻心锁采纳,获得10
31秒前
满意的念柏完成签到,获得积分10
32秒前
淡淡菠萝完成签到 ,获得积分10
33秒前
慕青应助bjcyqz采纳,获得10
33秒前
高大翠安完成签到 ,获得积分10
34秒前
35秒前
糯米糕完成签到 ,获得积分10
35秒前
SharonDu完成签到 ,获得积分10
37秒前
卖包的小行家完成签到 ,获得积分10
37秒前
Yasmine完成签到 ,获得积分10
37秒前
SCI的芷蝶完成签到 ,获得积分10
37秒前
微雨若,,完成签到 ,获得积分10
38秒前
panpanliumin完成签到,获得积分0
39秒前
山东老铁完成签到,获得积分10
40秒前
虚幻心锁发布了新的文献求助10
41秒前
qiaoxi完成签到,获得积分10
42秒前
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4583268
求助须知:如何正确求助?哪些是违规求助? 4000829
关于积分的说明 12382878
捐赠科研通 3676036
什么是DOI,文献DOI怎么找? 2026153
邀请新用户注册赠送积分活动 1059905
科研通“疑难数据库(出版商)”最低求助积分说明 946544