亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Trial-by-trial data analysis using computational models

计算机科学
作者
Nathaniel D. Daw
出处
期刊:Oxford University Press eBooks [Oxford University Press]
卷期号:: 3-38 被引量:429
标识
DOI:10.1093/acprof:oso/9780199600434.003.0001
摘要

In numerous and high-profile studies, researchers have recently begun to integrate computational models into the analysis of data from experiments on reward learning and decision making (Platt and Glimcher, 1999; O’Doherty et al., 2003; Sugrue et al., 2004; Barraclough et al., 2004; Samejima et al., 2005; Daw et al., 2006; Li et al., 2006; Frank et al., 2007; Tom et al., 2007; Kable and Glimcher, 2007; Lohrenz et al., 2007; Schonberg et al., 2007; Wittmann et al., 2008; Hare et al., 2008; Hampton et al., 2008; Plassmann et al., 2008). As these techniques are spreading rapidly, but have been developed and documented somewhat sporadically alongside the studies themselves, the present review aims to clarify the toolbox (see also O’Doherty et al., 2007). In particular, we discuss the rationale for these methods and the questions they are suited to address. We then offer a relatively practical tutorial about the basic statistical methods for their answer and how they can be applied to data analysis. The techniques are illustrated with fits of simple models to simulated datasets. Throughout, we flag interpretational and technical pitfalls of which we believe authors, reviewers, and readers should be aware. We focus on cataloging the particular, admittedly somewhat idiosyncratic, combination of techniques frequently used in this literature, but also on exposing these techniques as instances of a general set of tools that can be applied to analyze behavioral and neural data of many sorts. A number of other reviews (Daw and Doya, 2006; Dayan and Niv, 2008) have focused on the scientific conclusions that have been obtained with these methods, an issue we omit almost entirely here. There are also excellent books that cover statistical inference of this general sort with much greater generality, formal precision, and detail (MacKay, 2003; Gelman et al., 2004; Bishop, 2006; Gelman and Hill, 2007).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术蜗牛完成签到,获得积分20
3秒前
7秒前
野生菜狗发布了新的文献求助10
13秒前
笨笨曲奇完成签到,获得积分10
17秒前
窝恁叠发布了新的文献求助10
18秒前
天天天晴完成签到 ,获得积分10
19秒前
22秒前
24秒前
粗心的小蜜蜂完成签到,获得积分10
28秒前
Mong那粒沙发布了新的文献求助10
30秒前
浮游应助能干的跳跳糖采纳,获得10
31秒前
31秒前
NexusExplorer应助CX采纳,获得10
34秒前
36秒前
38秒前
41秒前
45秒前
zyyz完成签到,获得积分20
50秒前
小柒发布了新的文献求助10
51秒前
54秒前
星辰大海应助CCrain采纳,获得10
56秒前
窝恁叠发布了新的文献求助10
57秒前
Lonely发布了新的文献求助10
1分钟前
刚子完成签到 ,获得积分0
1分钟前
1分钟前
Bunnyy完成签到,获得积分10
1分钟前
丘比特应助小柒采纳,获得10
1分钟前
zyyz发布了新的文献求助10
1分钟前
葛力发布了新的文献求助10
1分钟前
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
追寻元菱应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
贺俊龙发布了新的文献求助10
1分钟前
CX发布了新的文献求助10
1分钟前
chenchen给chenchen的求助进行了留言
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232369
求助须知:如何正确求助?哪些是违规求助? 4401711
关于积分的说明 13699246
捐赠科研通 4268071
什么是DOI,文献DOI怎么找? 2342269
邀请新用户注册赠送积分活动 1339354
关于科研通互助平台的介绍 1295951