Trial-by-trial data analysis using computational models

计算机科学 工具箱 集合(抽象数据类型) 数据科学 人工智能
作者
Nathaniel D. Daw
出处
期刊:Oxford University Press eBooks [Oxford University Press]
被引量:249
标识
DOI:10.1093/acprof:oso/9780199600434.003.0001
摘要

In numerous and high-profile studies, researchers have recently begun to integrate computational models into the analysis of data from experiments on reward learning and decision making (Platt and Glimcher, 1999; O’Doherty et al., 2003; Sugrue et al., 2004; Barraclough et al., 2004; Samejima et al., 2005; Daw et al., 2006; Li et al., 2006; Frank et al., 2007; Tom et al., 2007; Kable and Glimcher, 2007; Lohrenz et al., 2007; Schonberg et al., 2007; Wittmann et al., 2008; Hare et al., 2008; Hampton et al., 2008; Plassmann et al., 2008). As these techniques are spreading rapidly, but have been developed and documented somewhat sporadically alongside the studies themselves, the present review aims to clarify the toolbox (see also O’Doherty et al., 2007). In particular, we discuss the rationale for these methods and the questions they are suited to address. We then offer a relatively practical tutorial about the basic statistical methods for their answer and how they can be applied to data analysis. The techniques are illustrated with fits of simple models to simulated datasets. Throughout, we flag interpretational and technical pitfalls of which we believe authors, reviewers, and readers should be aware. We focus on cataloging the particular, admittedly somewhat idiosyncratic, combination of techniques frequently used in this literature, but also on exposing these techniques as instances of a general set of tools that can be applied to analyze behavioral and neural data of many sorts. A number of other reviews (Daw and Doya, 2006; Dayan and Niv, 2008) have focused on the scientific conclusions that have been obtained with these methods, an issue we omit almost entirely here. There are also excellent books that cover statistical inference of this general sort with much greater generality, formal precision, and detail (MacKay, 2003; Gelman et al., 2004; Bishop, 2006; Gelman and Hill, 2007).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大橙子应助静静采纳,获得10
2秒前
2秒前
彭于彦祖应助freshman3005采纳,获得30
3秒前
英姑应助崩溃采纳,获得10
4秒前
lsd发布了新的文献求助10
4秒前
56360发布了新的文献求助10
5秒前
爆米花应助sqrt138采纳,获得10
5秒前
汪汪发布了新的文献求助10
5秒前
wp发布了新的文献求助20
6秒前
幽一完成签到,获得积分10
6秒前
6秒前
zhouyou发布了新的文献求助10
6秒前
7秒前
科研通AI2S应助忧心的问梅采纳,获得10
7秒前
大大大长腿完成签到,获得积分10
7秒前
Lynn发布了新的文献求助10
8秒前
大方溪流完成签到,获得积分10
8秒前
秋名的86上山了完成签到,获得积分10
8秒前
1212完成签到,获得积分10
9秒前
快点毕业吧完成签到,获得积分20
9秒前
9秒前
西子阳发布了新的文献求助10
10秒前
缓慢若云发布了新的文献求助10
10秒前
Luckyz发布了新的文献求助10
11秒前
11秒前
channy完成签到,获得积分10
11秒前
luckinstar完成签到,获得积分10
12秒前
13秒前
长亮发布了新的文献求助10
13秒前
无限平凡发布了新的文献求助10
13秒前
汪汪完成签到,获得积分10
14秒前
机灵飞珍关注了科研通微信公众号
14秒前
14秒前
咸鱼一号发布了新的文献求助10
14秒前
hzNB驳回了Yziii应助
15秒前
15秒前
马德里就思议完成签到,获得积分10
15秒前
外向的钢笔关注了科研通微信公众号
15秒前
liberty发布了新的文献求助10
15秒前
打打应助小马采纳,获得10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144366
求助须知:如何正确求助?哪些是违规求助? 2795962
关于积分的说明 7817099
捐赠科研通 2452017
什么是DOI,文献DOI怎么找? 1304837
科研通“疑难数据库(出版商)”最低求助积分说明 627295
版权声明 601419