摘要
In numerous and high-profile studies, researchers have recently begun to integrate computational models into the analysis of data from experiments on reward learning and decision making (Platt and Glimcher, 1999; O’Doherty et al., 2003; Sugrue et al., 2004; Barraclough et al., 2004; Samejima et al., 2005; Daw et al., 2006; Li et al., 2006; Frank et al., 2007; Tom et al., 2007; Kable and Glimcher, 2007; Lohrenz et al., 2007; Schonberg et al., 2007; Wittmann et al., 2008; Hare et al., 2008; Hampton et al., 2008; Plassmann et al., 2008). As these techniques are spreading rapidly, but have been developed and documented somewhat sporadically alongside the studies themselves, the present review aims to clarify the toolbox (see also O’Doherty et al., 2007). In particular, we discuss the rationale for these methods and the questions they are suited to address. We then offer a relatively practical tutorial about the basic statistical methods for their answer and how they can be applied to data analysis. The techniques are illustrated with fits of simple models to simulated datasets. Throughout, we flag interpretational and technical pitfalls of which we believe authors, reviewers, and readers should be aware. We focus on cataloging the particular, admittedly somewhat idiosyncratic, combination of techniques frequently used in this literature, but also on exposing these techniques as instances of a general set of tools that can be applied to analyze behavioral and neural data of many sorts. A number of other reviews (Daw and Doya, 2006; Dayan and Niv, 2008) have focused on the scientific conclusions that have been obtained with these methods, an issue we omit almost entirely here. There are also excellent books that cover statistical inference of this general sort with much greater generality, formal precision, and detail (MacKay, 2003; Gelman et al., 2004; Bishop, 2006; Gelman and Hill, 2007).