Trial-by-trial data analysis using computational models

计算机科学
作者
Nathaniel D. Daw
出处
期刊:Oxford University Press eBooks [Oxford University Press]
卷期号:: 3-38 被引量:429
标识
DOI:10.1093/acprof:oso/9780199600434.003.0001
摘要

In numerous and high-profile studies, researchers have recently begun to integrate computational models into the analysis of data from experiments on reward learning and decision making (Platt and Glimcher, 1999; O’Doherty et al., 2003; Sugrue et al., 2004; Barraclough et al., 2004; Samejima et al., 2005; Daw et al., 2006; Li et al., 2006; Frank et al., 2007; Tom et al., 2007; Kable and Glimcher, 2007; Lohrenz et al., 2007; Schonberg et al., 2007; Wittmann et al., 2008; Hare et al., 2008; Hampton et al., 2008; Plassmann et al., 2008). As these techniques are spreading rapidly, but have been developed and documented somewhat sporadically alongside the studies themselves, the present review aims to clarify the toolbox (see also O’Doherty et al., 2007). In particular, we discuss the rationale for these methods and the questions they are suited to address. We then offer a relatively practical tutorial about the basic statistical methods for their answer and how they can be applied to data analysis. The techniques are illustrated with fits of simple models to simulated datasets. Throughout, we flag interpretational and technical pitfalls of which we believe authors, reviewers, and readers should be aware. We focus on cataloging the particular, admittedly somewhat idiosyncratic, combination of techniques frequently used in this literature, but also on exposing these techniques as instances of a general set of tools that can be applied to analyze behavioral and neural data of many sorts. A number of other reviews (Daw and Doya, 2006; Dayan and Niv, 2008) have focused on the scientific conclusions that have been obtained with these methods, an issue we omit almost entirely here. There are also excellent books that cover statistical inference of this general sort with much greater generality, formal precision, and detail (MacKay, 2003; Gelman et al., 2004; Bishop, 2006; Gelman and Hill, 2007).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不秃燃的小老弟完成签到 ,获得积分10
刚刚
鲲鹏完成签到 ,获得积分10
3秒前
不知道叫个啥完成签到 ,获得积分10
4秒前
沉静的清涟完成签到,获得积分10
4秒前
GSQ完成签到,获得积分10
5秒前
科研通AI2S应助Physio采纳,获得10
7秒前
可靠映秋完成签到,获得积分10
8秒前
lmy完成签到 ,获得积分10
13秒前
Johnlian完成签到 ,获得积分10
17秒前
Lexi完成签到 ,获得积分10
20秒前
包谷冬完成签到 ,获得积分10
20秒前
忒寒碜完成签到,获得积分10
21秒前
一粟的粉r完成签到 ,获得积分10
21秒前
蜡笔小z完成签到 ,获得积分10
22秒前
浮游应助ccmxigua采纳,获得10
22秒前
科目三应助兮兮采纳,获得10
24秒前
guoxihan完成签到,获得积分10
26秒前
徐梦曦完成签到 ,获得积分10
28秒前
窝窝头完成签到 ,获得积分10
33秒前
害羞的振家完成签到,获得积分10
36秒前
侃侃完成签到,获得积分10
40秒前
执着的以筠完成签到 ,获得积分10
44秒前
44秒前
美满的皮卡丘完成签到 ,获得积分10
47秒前
淡然的芷荷完成签到 ,获得积分10
48秒前
等待的幼晴完成签到,获得积分10
51秒前
胡星海完成签到 ,获得积分10
56秒前
荔枝励志完成签到 ,获得积分10
1分钟前
www完成签到 ,获得积分10
1分钟前
onevip完成签到,获得积分0
1分钟前
包包完成签到 ,获得积分10
1分钟前
天才小能喵完成签到 ,获得积分0
1分钟前
乐正怡完成签到 ,获得积分0
1分钟前
1分钟前
淡定的健柏完成签到 ,获得积分10
1分钟前
王小凡完成签到 ,获得积分10
1分钟前
小石头完成签到 ,获得积分10
1分钟前
曾经沛白完成签到 ,获得积分10
1分钟前
ccmxigua完成签到,获得积分10
1分钟前
机智的从霜完成签到 ,获得积分10
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347617
求助须知:如何正确求助?哪些是违规求助? 4481841
关于积分的说明 13948177
捐赠科研通 4380227
什么是DOI,文献DOI怎么找? 2406843
邀请新用户注册赠送积分活动 1399398
关于科研通互助平台的介绍 1372558