清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Single-Source-Precursor Synthesis and Properties of SiMC(N) Ceramic Nanocomposites (M = Hf, Ta, HfTa)

陶瓷 材料科学 微观结构 纳米复合材料 放电等离子烧结 化学工程 聚合物 制作 纳米技术 复合材料 医学 工程类 病理 替代医学
作者
Qingbo Wen
摘要

Industrial and aerospace demands on future technologies have created an urgent need for new material properties that are beyond those of materials known today and that can only be fabricated by designing the respective microstructure at the nanoscale. Taking advantage of the correlation between the molecular structure of preceramic precursors and the microstructure of the derived ceramic materials, the single-source-precursor route offers possibilities to fabricate novel ceramic materials that are inaccessible by conventional synthesis.[1] The motivation of this Ph.D. work is to further develop the concepts for fabrication of novel ceramic nanocomposites with a tailor-made microstructure and versatile properties by molecular design of their precursors. With this motivation, a series of dense monolithic SiMC(N) ceramic nanocomposites (M = Hf, Ta, HfTa) were fabricated using single-source-precursor synthesis plus spark plasma sintering. The chemical synthesis, polymer-to-ceramic transformation as well as high-temperature microstructural evolution was characterized using FT-IR, MAS solid NMR, TG/MS, XRD, Elemental analysis, SEM, TEM and Raman spectroscopy. Moreover, electrical conductivity, microwave absorption capability, electromagnetic interference shielding performance and laser ablation resistance of the as-prepared dense monoliths were investigated as well. In the synthesis part, a series of M-containing single-source precursors were synthesized upon reactions between a commercially available allylhydridopolycarbosilane (SMP10) and metal compounds, including Hf(NMe2)4, Hf(NEt2)4 and Ta(NMe2)5. The polymer-to-ceramic transformation was characterized using FT-IR, 13C and 29Si MAS solid NMR as well as in situ TG/MS. The precursors synthesized using Hf(NMe2)4 and Ta(NMe2)5 lead to higher ceramic yield (≈ 80 wt.%) than that of Hf(NEt2)4 (≈ 71 wt.%), while the ceramic yield of the latter can be improved to ≈ 78 wt.% by introduction of BH3·SMe2. Several thermal stable SiMC(N) ceramic nanocomposites (powders) were prepared upon high-temperature annealing of the amorphous SiMC(N) ceramics, including SiHfC(N), boron-doped SiHfC(N), SiTaC(N), SiHf7Ta3C(N) and SiHf2Ta2C(N). XRD, Raman and TEM results reveal that the ceramic nanocomposites mainly comprise β-SiC and MCxN1-x as well as free carbon (M = Hf, Ta, HfyTa1-y). Rietveld refinement of XRD patterns and the TEM images confirm that the grain size of both β-SiC and MCxN1-x are less than 100 nm even after annealing at 1900 oC for 5 h. The grain growth of β-SiC can be effectively suppressed by introducing M elements into the single-source precursors. Hf0.7Ta0.3CxN1-x and Hf0.2Ta0.8CxN1-x solid solutions with an expected Hf/Ta atomic ratio can be controlled precisely by adjusting the mole ratio of metal compounds during synthesis of the single-source precursors. It is worth emphasizing that a unique MCxN1-x-carbon core shell microstructure is observed within all the SiMC(N) ceramic nanocomposites, and the Hf-rich phase (e.g., HfCxN1-x and Hf0.7Ta0.3CxN1-x) seems to facilitate the formation of the carbon shell more easily. The carbon shell on the MCxN1-x core is able to hinder the coarsening of MCxN1-x grains during high-temperature processing. Thus, dense monolithic SiMC(N) ceramic nanocomposites are fabricated successfully upon spark plasma sintering of the amorphous SiMC(N) ceramics at 2200 oC. The achieved maximum diameter is 35 mm, which is rarely reported in the literature. Laser ablation behavior of the SiHfC(N) ceramics was investigated on dense monolithic SiHfC(N) ceramic nanocomposites and Cf-reinforced SiHfC(N) ceramic matrix composites. With addition of the HfCxN1-x phase, the rim of the ablation pit is covered by Hf-containing materials (e.g., HfO2), which are able to suppress the growth of the ablation pit. The dielectric properties and microwave absorption performance of the SiHfC(N) ceramics were investigated in the X-band (8.2 ~ 12.4 GHz) at room temperature. The minimum reflection loss and the maximum effective absorption bandwidth amount to -47 dB and 3.6 GHz, respectively. Free carbon, including graphitic carbon homogeneously dispersed in the SiC-matrix and less ordered carbon deposited as a shell on HfCxN1-x nanoparticles, accounts for the unique dielectric behavior of the SiHfC(N) ceramics. Electromagnetic interference (EMI) shielding performance of the dense monolithic SiHfC(N) ceramic nanocomposites were investigated in the X-band (8.2 ~ 12.4 GHz) at temperatures up to 600 oC. At room temperature, the SiC/C-35mm and SiC/15HfCxN1-x/C-35mm exhibit an average total shielding effectiveness (SET) of ≈ 21 dB and ≈ 42 dB, respectively, and at 600 oC, ≈ 22.6 dB and ≈ 40.2 dB, respectively. That means that with addition of a small amount of conductive HfCxN1-x, the SET is highly improved at both room and high temperatures. In summary, the synthesis, ceramization, densification as well as microstructural evolution of SiMC(N) ceramic nanocomposites are deeply investigated in this work. With the addition of an M-containing phase, the as-prepared SiMC(N) ceramic nanocomposites exhibit enhanced electrical conductivity, microwave absorption capability, electromagnetic interference shielding performance and laser ablation resistance. Moreover, the correlations regarding to molecular design, microstructure and properties of the SiMC(N) ceramic nanocomposites are carefully discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YYJ完成签到,获得积分10
2秒前
juan完成签到 ,获得积分10
10秒前
山猫大王完成签到 ,获得积分10
27秒前
53秒前
吴彦祖发布了新的文献求助10
59秒前
大个应助科研通管家采纳,获得10
1分钟前
zhao完成签到,获得积分10
2分钟前
冬去春来完成签到 ,获得积分10
2分钟前
3分钟前
FFFFFF发布了新的文献求助10
3分钟前
斯文败类应助FFFFFF采纳,获得10
3分钟前
FFFFFF完成签到,获得积分10
3分钟前
leo完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
zz发布了新的文献求助10
4分钟前
赘婿应助zz采纳,获得10
4分钟前
吴彦祖发布了新的文献求助10
4分钟前
先锋完成签到 ,获得积分10
4分钟前
5分钟前
自由的无色完成签到 ,获得积分10
5分钟前
7分钟前
zz发布了新的文献求助10
7分钟前
深情安青应助科研通管家采纳,获得10
7分钟前
方白秋完成签到,获得积分10
8分钟前
吴彦祖发布了新的文献求助10
8分钟前
热心芸完成签到,获得积分10
9分钟前
9分钟前
小二郎应助科研通管家采纳,获得10
9分钟前
吴彦祖发布了新的文献求助10
9分钟前
9分钟前
李露露发布了新的文献求助10
9分钟前
忧心的从蓉完成签到,获得积分10
12分钟前
12分钟前
Jiang发布了新的文献求助10
12分钟前
枯藤老柳树完成签到,获得积分10
12分钟前
13分钟前
Jiang完成签到,获得积分10
13分钟前
zz发布了新的文献求助10
13分钟前
LIUYONG应助zz采纳,获得10
13分钟前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
A Chronicle of Small Beer: The Memoirs of Nan Green 1000
From Rural China to the Ivy League: Reminiscences of Transformations in Modern Chinese History 900
Migration and Wellbeing: Towards a More Inclusive World 900
Eric Dunning and the Sociology of Sport 850
QMS18Ed2 | process management. 2nd ed 800
Operative Techniques in Pediatric Orthopaedic Surgery 510
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2913368
求助须知:如何正确求助?哪些是违规求助? 2550112
关于积分的说明 6900298
捐赠科研通 2213417
什么是DOI,文献DOI怎么找? 1176420
版权声明 588231
科研通“疑难数据库(出版商)”最低求助积分说明 576113