净现值1
祖细胞
造血
川地34
生物
干细胞
骨髓
癌症研究
髓样
免疫学
白血病
单倍率不足
分子生物学
表型
细胞生物学
遗传学
核型
基因
染色体
作者
Aparna Raval,Christopher Y. Park,Wendy W. Pang,Brenda Kusler,Kunju Sridhar,Jason Gotlib,Peter L. Greenberg,Irving L. Weissman,Beverly S. Mitchell
出处
期刊:Blood
[American Society of Hematology]
日期:2009-11-20
卷期号:114 (22): 738-738
被引量:3
标识
DOI:10.1182/blood.v114.22.738.738
摘要
Abstract Abstract 738 Myelodysplastic syndromes (MDS) are characterized by defective hematopoietic stem/progenitor cell maturation, resulting in ineffective hematopoiesis. This group of disorders is characterized by cytogenetic abnormalities and approximately 25% of cases progress to acute myeloid leukemia (AML). NPM1 is frequently mutated in AML and translocations involving NPM1 occur in a number of hematopoietic malignancies including MDS. NPM1 heterozygous mice (NPM1 +/−) have been shown to have a MDS-like phenotype. Taken together, these data suggest an important role for NPM1 in the function of hematopoietic stem cells (HSC) and/or committed progenitors. In order to evaluate NPM1 function in early hematopoiesis, we have evaluated NPM1 expression in both the mouse and human hematopoietic systems. Using quantitative RT-PCR, we show that NPM1 expression levels are 2-3-fold higher in normal CD34+ bone marrow progenitor cells compared to total bone marrow in humans. Furthermore, NPM1 expression levels are decreased by ∼50% in 9/37 MDS CD34+ cells when compared to normal controls. Of interest, NPM1 expression is reduced primarily in patients with poor or intermediate prognosis. Consistent with a functional role for NPM1 in HSC, NPM1 +/− mice (developed by gene trapping and obtained from the MMRRC at UC-Davis) contained significantly increased numbers of HSC (Lin-cKit+Sca+CD34-CD150+) within the Lin-cKit+Sca+ population compared to those from the littermate controls (52 ± 2.6% vs,74 ± 12%, p < 0.01). Consistent with prior reports, NPM +/− mice contained significantly fewer mature erythrocytes (Ter119+CD71lo) in the bone marrow compared to WT controls (6.5 ± 1.8% vs 10 ± 0.5% p < 0.01). In order to study NPM +/− HSC function, we tested the ability of these HSCs to form colonies in methylcellulose. NPM1 +/− HSCs formed increased numbers of both CFU-GM and CFU-GEMM colonies and decreased numbers of CFU-E colonies compared to WT HSC. Flow cytometric analysis of pooled day 14 colonies from individual mice revealed a >2 fold increase in cKit+ progenitor cells from NPM1 +/− colonies (2.0 ± 1.0% vs. 0.2 ± 0.2%, p = 0.02), suggesting that the differentiation potential of NPM+/− HSCs is impaired. To characterize HSC function in vivo, equal numbers of double-sorted HSCs from WT and NPM1 +/− mice were transplanted in triplicate into lethally irradiated C57B6 (CD45.2) recipients. Analysis of peripheral blood donor chimerism (CD45.1+CD45.2+) 21 days post-transplantation showed that NPM1 +/− HSC-transplanted recipients exhibited markedly lower granulocyte chimerism than WT HSC recipients (5.5 fold reduction, 2 ± 2% vs. 11 ± 5%, p < 0.01). This finding suggests that although NPM1 +/− mice have increased numbers of HSC, these HSC exhibit either altered myeloid fate decisions or decreased bone marrow homing capacity. We are currently investigating long-term engraftment potential to further elucidate the function of HSC in NPM1 +/− mice in vivo. In aggregate, these data demonstrate a functional role for NPM1 in early myeloid differentiation and strongly suggest that NPM effects may be exerted as early as at the level of the HSC. Disclosures: Weissman: Amgen: Equity Ownership; Cellerant Inc.: ; Stem Cells Inc.: Equity Ownership, Founder; U.S. Patent Application 11/528,890 entitled “Methods for Diagnosing and Evaluating Treatment of Blood Disorders.”: Patents & Royalties.
科研通智能强力驱动
Strongly Powered by AbleSci AI