Hazard of pharmaceuticals for aquatic environment: Prioritization by structural approaches and prediction of ecotoxicity

数量结构-活动关系 生态毒性 水生毒理学 适用范围 大型水蚤 主成分分析 危害 分子描述符 危害分析 生化工程 环境科学 计算机科学 生态学 机器学习 生物 毒性 人工智能 化学 工程类 可靠性工程 有机化学
作者
Alessandro Sangion,Paola Gramatica
出处
期刊:Environment International [Elsevier BV]
卷期号:95: 131-143 被引量:117
标识
DOI:10.1016/j.envint.2016.08.008
摘要

Active Pharmaceutical Ingredients (APIs) are recognized as Contaminants of Emerging Concern (CEC) since they are detected in the environment in increasing amount, mainly in aquatic compartment, where they may be hazardous for wildlife. The huge lack of experimental data for a large number of end-points requires tools able to quickly highlight the potentially most hazardous and toxic pharmaceuticals, focusing experiments on the prioritized compounds. In silico tools, like QSAR (Quantitative Structure-Activity Relationship) models based on structural molecular descriptors, can predict missing data for toxic end-points necessary to prioritize existing, or even not yet synthesized chemicals for their potential hazard. In the present study, new externally validated QSAR models, specific to predict acute toxicity of APIs in key organisms of the three main aquatic trophic levels, i.e. algae, Daphnia and two species of fish, were developed using the QSARINS software. These Multiple Linear regressions - Ordinary Least Squares (MLR-OLS) models are based on theoretical molecular descriptors calculated by free PaDEL-Descriptor software and selected by Genetic Algorithm. The models are statistically robust, externally predictive and characterized by a wide structural applicability domain. They were applied to predict acute toxicity for a large set of APIs without experimental data. Then predictions were processed by Principal Component Analysis (PCA) and a trend, driven by the combination of toxicities for all the studied organisms, was highlighted. This trend, named Aquatic Toxicity Index (ATI), allowed the raking of pharmaceuticals according to their potential toxicity upon the whole aquatic environment. Finally a QSAR model for the prediction of this Aquatic Toxicity Index (ATI) was proposed to be applicable in QSARINS for the screening of existing APIs for their potential hazard and the a priori chemical design of not environmentally hazardous APIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喷泡的兔子完成签到,获得积分10
1秒前
还单身的凡梅完成签到,获得积分10
3秒前
伯努利发布了新的文献求助10
3秒前
5秒前
虚拟的秋寒完成签到,获得积分10
5秒前
8秒前
9秒前
伯努利完成签到,获得积分10
9秒前
ceicic发布了新的文献求助10
11秒前
hdh016发布了新的文献求助10
14秒前
Kelsey完成签到 ,获得积分10
14秒前
17秒前
18秒前
20秒前
三木完成签到,获得积分10
20秒前
spenley完成签到,获得积分10
20秒前
小马甲应助文静的如娆采纳,获得10
20秒前
芒小果发布了新的文献求助10
23秒前
Jc完成签到 ,获得积分10
24秒前
24秒前
26秒前
士多啤梨完成签到 ,获得积分10
27秒前
27秒前
小叮当完成签到 ,获得积分10
30秒前
慕青应助芒小果采纳,获得10
30秒前
情怀应助文静的如娆采纳,获得10
32秒前
练英雄发布了新的文献求助10
33秒前
生如夏花完成签到,获得积分10
33秒前
panda完成签到,获得积分10
34秒前
卜靖荷给卜靖荷的求助进行了留言
36秒前
斯文败类应助yagkinc采纳,获得10
44秒前
44秒前
饼饼发布了新的文献求助10
49秒前
dnbe完成签到,获得积分10
51秒前
深海鱼完成签到,获得积分10
55秒前
57秒前
星辰大海应助dnbe采纳,获得10
58秒前
58秒前
Jc发布了新的文献求助10
1分钟前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967080
求助须知:如何正确求助?哪些是违规求助? 3512449
关于积分的说明 11163289
捐赠科研通 3247337
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804450