Hazard of pharmaceuticals for aquatic environment: Prioritization by structural approaches and prediction of ecotoxicity

数量结构-活动关系 生态毒性 水生毒理学 适用范围 大型水蚤 主成分分析 危害 分子描述符 危害分析 生化工程 环境科学 计算机科学 生态学 机器学习 生物 毒性 人工智能 化学 工程类 可靠性工程 有机化学
作者
Alessandro Sangion,Paola Gramatica
出处
期刊:Environment International [Elsevier]
卷期号:95: 131-143 被引量:117
标识
DOI:10.1016/j.envint.2016.08.008
摘要

Active Pharmaceutical Ingredients (APIs) are recognized as Contaminants of Emerging Concern (CEC) since they are detected in the environment in increasing amount, mainly in aquatic compartment, where they may be hazardous for wildlife. The huge lack of experimental data for a large number of end-points requires tools able to quickly highlight the potentially most hazardous and toxic pharmaceuticals, focusing experiments on the prioritized compounds. In silico tools, like QSAR (Quantitative Structure-Activity Relationship) models based on structural molecular descriptors, can predict missing data for toxic end-points necessary to prioritize existing, or even not yet synthesized chemicals for their potential hazard. In the present study, new externally validated QSAR models, specific to predict acute toxicity of APIs in key organisms of the three main aquatic trophic levels, i.e. algae, Daphnia and two species of fish, were developed using the QSARINS software. These Multiple Linear regressions - Ordinary Least Squares (MLR-OLS) models are based on theoretical molecular descriptors calculated by free PaDEL-Descriptor software and selected by Genetic Algorithm. The models are statistically robust, externally predictive and characterized by a wide structural applicability domain. They were applied to predict acute toxicity for a large set of APIs without experimental data. Then predictions were processed by Principal Component Analysis (PCA) and a trend, driven by the combination of toxicities for all the studied organisms, was highlighted. This trend, named Aquatic Toxicity Index (ATI), allowed the raking of pharmaceuticals according to their potential toxicity upon the whole aquatic environment. Finally a QSAR model for the prediction of this Aquatic Toxicity Index (ATI) was proposed to be applicable in QSARINS for the screening of existing APIs for their potential hazard and the a priori chemical design of not environmentally hazardous APIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王发布了新的文献求助10
1秒前
烟花应助61forsci采纳,获得10
2秒前
2秒前
2秒前
psy发布了新的文献求助30
6秒前
6秒前
7秒前
夏凛完成签到 ,获得积分10
7秒前
8秒前
PigGyue发布了新的文献求助10
8秒前
8秒前
9秒前
阿比盖尔发布了新的文献求助30
11秒前
11秒前
11秒前
烟花应助PigGyue采纳,获得10
11秒前
甜蜜花完成签到,获得积分20
12秒前
TRz完成签到,获得积分10
14秒前
14秒前
psy完成签到,获得积分10
15秒前
早起完成签到,获得积分10
15秒前
菲菲发布了新的文献求助10
16秒前
云游归尘完成签到 ,获得积分10
17秒前
慕青应助陈朝旧迹采纳,获得10
18秒前
爆炸馒头发布了新的文献求助10
19秒前
20秒前
20秒前
22秒前
26秒前
古今奇观完成签到 ,获得积分10
26秒前
菲菲完成签到,获得积分10
27秒前
新楚完成签到 ,获得积分10
27秒前
28秒前
揍鱼完成签到 ,获得积分10
28秒前
烟花应助defupai采纳,获得10
29秒前
上官若男应助别当真采纳,获得10
30秒前
科研通AI2S应助稳重的秋天采纳,获得10
31秒前
FF发布了新的文献求助10
31秒前
31秒前
斯文败类应助怡然的如之采纳,获得10
31秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267805
求助须知:如何正确求助?哪些是违规求助? 2907197
关于积分的说明 8340974
捐赠科研通 2577906
什么是DOI,文献DOI怎么找? 1401256
科研通“疑难数据库(出版商)”最低求助积分说明 655013
邀请新用户注册赠送积分活动 634036