Liquid-Phase Synthesis of Argyrodite-Type Li6PS5Br Solid Electrolyte with High Lithium-Ion Conductivity

电解质 离子电导率 电导率 电化学 锂(药物) 快离子导体 无机化学 材料科学 离子液体 电化学窗口 相(物质) 化学 电极 物理化学 有机化学 催化作用 内分泌学 医学
作者
So Yubuchi,Atsushi Sakuda,Masahiro Tatsumisago
出处
期刊:Meeting abstracts 卷期号:MA2016-02 (53): 3982-3982 被引量:2
标识
DOI:10.1149/ma2016-02/53/3982
摘要

Introduction Solid electrolytes are attracting attention as essential components for advanced lithium-ion batteries because of their great electrochemical stability, high lithium ion transport number and wide operating temperature. Therefore, all-solid-state batteries have been proposed as a strong candidate for various electrochemical storage devices. To improve the electrochemical performances of the all-solid-state batteries, solid electrolytes with high ionic conductivities have been investigated. Li 7 P 3 S 11 [1] and Li 6 PS 5 X (X = Cl, Br) [2] have been reported to show an extremely high lithium ion conductivity of more than 10 -3 S cm -1 , which is comparable to that of liquid electrolytes. Unfortunately, it takes long time to prepare these solid electrolytes using a mechanical milling technique. Therefore, liquid-phase synthesis of the sulfide-based solid electrolytes is expected as more simple and effective processes. Recently, it was reported that β –Li 3 PS 4 [3] with an ionic conductivity of 1.6×10 -4 S cm -1 and Li 7 P 2 S 8 I [4] with an ionic conductivity of 6.4×10 -4 S cm -1 were synthesized using tetrahydrofuran and acetonitrile, respectively. In addition, Matsuda and coworkers reported that Li 3 PS 4 was synthesized by liquid-phase shaking process using ethyl acetate for 6 hours [5]. We have reported that argyrodite-type Li 6 PS 5 X (X=Cl, Br) solid electrolyte prepared by mechanical milling was dissolved in ethanol solution, and the ionic conductivity of the reprecipitated electrolyte was 10 -5 -10 -4 S cm -1 at room temperature [6]. However, this approach needs the multi-step processes of mechanical milling and dissolution-reprecipitation. In this study, the Li 6 PS 5 Br solid electrolyte was directly synthesized from Li 2 S, P 2 S 5 and LiBr by liquid-phase reaction using tetrahydrofuran and ethanol. Experimental Li 2 S and P 2 S 5 with a stoichiometry of 3 to 1 were mixed in tetrahydrofuran (THF) at room temperature, and then a Li 3 PS 4 precursor in THF suspension was obtained. An ethanol solution of Li 2 S and LiBr was also prepared. The mixture solution was obtained by the THF suspension and the ethanol solution. The mixture solution was dried at 150 o C under vacuum to obtain solid powders or heat-treated at 550 o C in a dry argon atmosphere to enhance their crystallinity. All-solid-state batteries with LiNi 1/3 Mn 1/3 Co 1/3 O 2 (NMC) active material and Li 6 PS 5 Br solid electrolytes obtained by mechanical milling or liquid-phase synthesis were fabricated and characterized. Results and discussion A homogenous pale-green solution was obtained. Fine powders were precipitated after removing the solvents by drying at 150 o C and/or heat treatment at 550 o C. X-ray diffraction patterns showed that the obtained sample was mainly Li 6 PS 5 Br crystal. Especially, crystallinity of Li 6 PS 5 Br was enhanced by heat treatment at 550 o C. The Li 6 PS 5 Br electrolyte synthesized using the liquid-phase technique showed a high lithium-ion conductivity of 1.1×10 - 3 S cm -1 at 25 o C, comparable to that prepared using a mechanical milling technique. The primary particle size of Li 6 PS 5 Br obtained using the liquid-phase technique was about 1 μm. All-solid-state batteries with the Li 6 PS 5 Br electrolyte showed the capacity of 140 mAh g -1 . Acknowledgement The research was financially supported by the Japan Science and Technology Agency (JST), Advanced Low Carbon Technology Research and Development Program (ALCA), Specially Promoted Research for Innovation Next Generation Batteries (SPRING) Project, and by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan References [1] Y. Seino et al ., Energy Environ. Sci ., 7 (2014) 627. [2] S. Boulineau, et al ., Solid State Ionics , 3 (2012), 1. [3] Z. Liu et al ., J. Am. Chem. Soc ., 135 (2013) 975. [4] E. Rangasamy et al ., J. Am. Chem. Soc ., 137 (2015) 1387. [5] N. H. H. Phuc et al ., Solid State Ionics (2015) in press . [6] S. Yubuchi et al ., J. Power Sources , 293 (2015) 941.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
马马发布了新的文献求助10
刚刚
缓慢平蓝发布了新的文献求助10
刚刚
xuxiaoyan发布了新的文献求助10
1秒前
1秒前
隐形曼青应助森鸥外采纳,获得10
1秒前
1秒前
徐阳发布了新的文献求助10
1秒前
Lumos完成签到,获得积分20
1秒前
浮游窥天发布了新的文献求助10
1秒前
Joy发布了新的文献求助10
2秒前
XU徐发布了新的文献求助20
2秒前
2秒前
阳佟水蓉完成签到,获得积分10
2秒前
3秒前
褐瞳完成签到,获得积分10
3秒前
4秒前
Tian发布了新的文献求助10
4秒前
大菊完成签到,获得积分10
4秒前
无敌咖啡豆完成签到,获得积分10
5秒前
5秒前
HU发布了新的文献求助10
5秒前
7秒前
7秒前
小白t73完成签到 ,获得积分10
7秒前
7秒前
梦XING发布了新的文献求助10
8秒前
8秒前
9秒前
Eva完成签到,获得积分10
9秒前
赶紧毕业发布了新的文献求助10
9秒前
楠楠发布了新的文献求助10
10秒前
Joy完成签到,获得积分10
10秒前
挽倾颜发布了新的文献求助10
10秒前
2897402853完成签到,获得积分10
10秒前
森鸥外发布了新的文献求助10
11秒前
WELON关注了科研通微信公众号
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
涣醒发布了新的文献求助10
11秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238071
求助须知:如何正确求助?哪些是违规求助? 4405677
关于积分的说明 13711487
捐赠科研通 4274032
什么是DOI,文献DOI怎么找? 2345369
邀请新用户注册赠送积分活动 1342457
关于科研通互助平台的介绍 1300343