Self-tuned local feedback gain based decentralized fault tolerant control for a class of large-scale nonlinear systems

控制理论(社会学) 非线性系统 分散系统 计算机科学 执行机构 容错 断层(地质) 观察员(物理) 控制器(灌溉) 方案(数学) 比例(比率) 控制工程 控制(管理) 工程类 分布式计算 数学 人工智能 农学 数学分析 地震学 地质学 物理 生物 量子力学
作者
Bo Zhao,Yuanchun Li,Derong Liu
出处
期刊:Neurocomputing [Elsevier]
卷期号:235: 147-156 被引量:31
标识
DOI:10.1016/j.neucom.2016.12.063
摘要

In this paper, a decentralized fault tolerant control (DFTC) scheme is proposed for a class of large-scale nonlinear systems based on self-tuned local feedback gain against partial loss of actuator effectiveness (PLOAE). Consider a large-scale nonlinear system as a set of interconnected subsystems, a decentralized control method is proposed by employing two radial basis function neural networks (RBFNNs) for the fault-free system. Then, the unknown system is identified using RBFNNs. By establishing a decentralized observer, the derived self-tuned local feedback gain is placed before the proposed decentralized controller to guarantee control performance for the subsystem suffering from PLOAE fault. Finally, simulation examples are provided to demonstrate the effectiveness of the present DFTC scheme. The main contributions of this paper are: i) The unknown large-scale nonlinear system can be identified using locally measured states, so the actuator fault can be handled in its local subsystem. It implies that the performance degradation of the faulty subsystem cannot affect the fault-free subsystems. ii) The estimated effectiveness factor is placed before the proposed decentralized scheme. The fault tolerant control structure is simple since it does not need to be redesigned in the case of PLOAE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动人的老黑完成签到 ,获得积分10
1秒前
星星泡饭发布了新的文献求助10
1秒前
2秒前
Silence完成签到,获得积分10
2秒前
yan儿发布了新的文献求助10
3秒前
pearl完成签到,获得积分10
4秒前
hahah发布了新的文献求助10
4秒前
请叫我风吹麦浪应助胖豆采纳,获得10
4秒前
无花果应助幸福胡萝卜采纳,获得10
4秒前
5秒前
卡卡发布了新的文献求助10
5秒前
wanci应助风趣的天真采纳,获得10
5秒前
Silence发布了新的文献求助10
5秒前
清爽老九发布了新的文献求助100
5秒前
6秒前
衔尾蛇发布了新的文献求助10
6秒前
小蔡会有猫的完成签到,获得积分10
6秒前
zhai发布了新的文献求助10
6秒前
6秒前
6秒前
村上春树的摩的完成签到 ,获得积分10
6秒前
6秒前
脑洞疼应助JACK采纳,获得10
7秒前
zhouyunan完成签到,获得积分10
7秒前
昵称发布了新的文献求助10
7秒前
7秒前
7秒前
馥日祎完成签到,获得积分10
7秒前
Ava应助Rui采纳,获得10
8秒前
coolkid完成签到 ,获得积分10
8秒前
贼拉瘦的美神完成签到,获得积分10
9秒前
tsy完成签到 ,获得积分10
10秒前
April发布了新的文献求助20
10秒前
11秒前
今后应助不安豁采纳,获得10
12秒前
huifang发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
67发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762