吸附
亚甲蓝
水溶液
吸附
傅里叶变换红外光谱
化学
朗缪尔吸附模型
核化学
动力学
色谱法
化学工程
有机化学
光催化
催化作用
工程类
物理
量子力学
作者
Hamid Poormand,Mostafa Leili,Marzieh Khazaei
摘要
In this research, aluminum-based drinking water treatment sludge is used as a starting material and immobilized by sodium alginate to develop low cost adsorbent for the removal of methylene blue (MB) from aqueous solutions. The studied variables included pH, adsorbent dose, initial MB concentration and contact time. Characteristics of the adsorbent were also studied using scanning electron microscopy and Fourier transform infrared spectroscopy (FTIR). It was revealed from kinetic tests that removal efficiency of MB was 88.5% under the optimum conditions of pH 8, initial MB concentration of 50 mg/L, contact time of 60 min, and adsorbent dose of 0.3 g/L. The oxygen functional groups such as –OH, C–O–C and C=O were found on the surface of developed adsorbent by FTIR. In addition, the adsorption data fitted well the Langmuir adsorption model with the maximum sorption capacity of 909.1 mg/g, and followed the pseudo-second-order kinetics. Findings of this study indicate that the prepared adsorbent is promising for further development of an effective and economical adsorbent material in the near future.
科研通智能强力驱动
Strongly Powered by AbleSci AI