已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Characterising the Charge Storage Mechanisms in Electrochemical Capacitors Using a Combination of Electrochemical Impedance Spectroscopy (EIS) and Step Potential Electrochemical Spectroscopy (SPECS)

电容 介电谱 材料科学 超级电容器 电容器 电极 假电容器 电化学 循环伏安法 储能 电解质 双层电容 假电容 化学 电气工程 电压 功率(物理) 热力学 工程类 物理化学 物理
作者
Scott W. Donne,Madeleine Dupont,Amanda P. Cameron,Gareth R. Elliott
出处
期刊:Meeting abstracts 卷期号:MA2016-02 (7): 1038-1038
标识
DOI:10.1149/ma2016-02/7/1038
摘要

Electrochemical capacitors are energy storage devices which have been demonstrated to exhibit both high specific capacitance and high specific power. Electrochemical capacitors are a promising energy storage technology due to their unique combination of specific energy and power output in addition to being relatively inexpensive and environmentally friendly. The performance of electrochemical capacitors is largely influenced by the electrode material properties. The specific properties of the electrode will determine both the nature and magnitude of the charge storage processes occurring within the electrode, such as double layer capacitance (non-faradaic) and redox reactions (faradaic; pseudo-capacitance). For example, activated carbons store charge almost exclusively via double layer capacitance, whereas metal oxides, such as ruthenium oxide and manganese oxide, will store charge via a combination of double layer and pseudo-capacitance. In metal oxides, pseudo-capacitance arises due to the reduction and oxidation of the material via proton insertion (and de-insertion), with ruthenium oxide and manganese dioxide exhibiting different charge storage characteristics. Understanding how the charge storage mechanism is influenced by material (and electrolyte) properties is vital for designing electrodes with optimised performance characteristics. However, this requires an understanding of how each charge storage mechanism contributes to capacitive performance. In terms of evaluating electrode performance, conventional electrochemical methods, such as cyclic voltammetry and constant current charge-discharge, cannot differentiate the capacitance contributions from charge storage processes involved. Characterising the different charge storage contributions from double-layer charge storage (non-faradaic) and pseudo-capacitive redox processes (faradaic) is a vital step in relating electrode performance to its material properties. In this work, both electrochemical impedance spectroscopy (EIS) and step potential electrochemical spectroscopy (SPECS) have been applied to electrochemical capacitor electrodes as a performance analysis method to determine the charge storage contributions from different processes. EIS has a number of advantages over other techniques, namely, the different time constants of electrochemical processes can be utilized to separate the different mechanisms occurring at the electrode. The SPECS experiment uses the same principle as EIS, i.e. separating the electrochemical mechanisms based on their different time constants. The SPECS procedure involves applying a small (±25 mV) potential step to the working electrode followed by a long equilibration time (300 s). This process is repeated over and entire charge-discharge cycle. By scanning at such a slow rate, the electrode has time to equilibrate at each potential, and the maximum charge storage capabilities of the electrode can be accessed. Each of the different charge storage processes occurring at the electrode has a unique time- dependent current response, and hence each potential step profile can be fitted to a model describing each of these processes. From this, values for series resistance (R S ), double layer capacitance (C DL ), diffusion limited capacitance (C D ) and residual capacitance (C R ) can be extracted. When the potential is stepped over an entire capacitor cycling range, contributions from each process can be determined at each point in the cycle. Additionally, by varying the equilibration time over which the current response is analysed, the scan rate can be effectively increased therefore the electrode behaviour can be analysed over a range of scan rates. This allows the development of a Ragone diagram for the different charge storage processes, indicating how specific charge storage mechanisms contribute to the power and energy characteristics of different electrode materials. This technique has been applied to a range of commonly used electrochemical capacitor systems including activated carbon, manganese dioxide and ruthenium oxides.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
抽疯的电风扇13完成签到 ,获得积分10
1秒前
2秒前
寻123完成签到,获得积分10
4秒前
他也蓝完成签到,获得积分10
7秒前
7秒前
FashionBoy应助mochi采纳,获得10
7秒前
伯爵完成签到 ,获得积分10
7秒前
可爱的香菇完成签到 ,获得积分10
7秒前
8秒前
8秒前
结实的鱼完成签到 ,获得积分10
11秒前
学术霸王完成签到 ,获得积分10
12秒前
乐观的颦发布了新的文献求助10
13秒前
13秒前
今后应助wushuping采纳,获得10
14秒前
醋溜爆肚儿完成签到,获得积分10
14秒前
xch发布了新的文献求助10
15秒前
战神林北完成签到,获得积分10
17秒前
17秒前
momo完成签到,获得积分10
17秒前
Setlla完成签到 ,获得积分10
21秒前
22秒前
852应助111222333采纳,获得10
23秒前
脑洞疼应助神钩侠采纳,获得10
24秒前
社会主义接班人完成签到,获得积分10
24秒前
lyy66964193完成签到,获得积分10
26秒前
完美世界应助xch采纳,获得10
27秒前
mochi发布了新的文献求助10
28秒前
聪慧的凝海完成签到 ,获得积分0
29秒前
29秒前
30秒前
故渊完成签到,获得积分10
30秒前
Peggy发布了新的文献求助20
34秒前
35秒前
阿湫完成签到 ,获得积分10
35秒前
CipherSage应助2022.20采纳,获得30
36秒前
lynn完成签到 ,获得积分10
36秒前
周周发布了新的文献求助10
37秒前
森花完成签到,获得积分10
37秒前
炙热紫翠发布了新的文献求助10
38秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491218
求助须知:如何正确求助?哪些是违规求助? 3077861
关于积分的说明 9150845
捐赠科研通 2770369
什么是DOI,文献DOI怎么找? 1520305
邀请新用户注册赠送积分活动 704552
科研通“疑难数据库(出版商)”最低求助积分说明 702253