数学
操作员(生物学)
伪单调算子
单调函数
轮班操作员
拟正规算子
单调多边形
乘法运算符
有限秩算子
离散数学
纯数学
半椭圆算子
标量(数学)
紧算子
组合数学
数学分析
算子空间
微分算子
巴拿赫空间
希尔伯特空间
计算机科学
基因
转录因子
抑制因子
几何学
化学
程序设计语言
生物化学
扩展(谓词逻辑)
出处
期刊:Communications in Mathematics and Applications
[RGN Publications]
日期:2016-11-04
卷期号:7 (2): 93-103
被引量:2
标识
DOI:10.26713/cma.v7i2.372
摘要
We propose adjointations between operator orderings, which convert any operator inequalities/identities associated with certain binary operations to new ones. Then we prove that a continuous function \(f:(0,\infty) \to (0,\infty)\) is operator monotone increasing if and only if \(f(A \: !_t \: B) \leq f(A) \: !_t \: f(B)\) for any positive operators \(A,B\) and scalar \(t \in [0,1]\). Here, \(!_t\) denotes the \(t\)-weighted harmonic mean. As a counterpart, \(f\) is operator monotone decreasing if and only if the reverse of preceding inequality holds. Moreover, we obtain many characterizations of operator monotone increasingness/decreasingness in terms of operator means. These characterizations lead to many operator inequalities involving means.
科研通智能强力驱动
Strongly Powered by AbleSci AI