亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Group sparse autoencoder

自编码 过度拟合 人工智能 模式识别(心理学) 特征学习 计算机科学 MNIST数据库 深度学习 稀疏逼近 特征提取 正规化(语言学) 机器学习 人工神经网络
作者
Anush Sankaran,Mayank Vatsa,Richa Singh,Angshul Majumdar
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:60: 64-74 被引量:50
标识
DOI:10.1016/j.imavis.2017.01.005
摘要

Unsupervised feature extraction is gaining a lot of research attention following its success to represent any kind of noisy data. Owing to the presence of a lot of training parameters, these feature learning models are prone to overfitting. Different regularization methods have been explored in the literature to avoid overfitting in deep learning models. In this research, we consider autoencoder as the feature learning architecture and propose ℓ2,1-norm based regularization to improve its learning capacity, called as Group Sparse AutoEncoder (GSAE). ℓ2,1-norm is based on the postulate that the features from the same class will have a common sparsity pattern in the feature space. We present the learning algorithm for group sparse encoding using majorization–minimization approach. The performance of the proposed algorithm is also studied on three baseline image datasets: MNIST, CIFAR-10, and SVHN. Further, using GSAE, we propose a novel deep learning based image representation for minutia detection from latent fingerprints. Latent fingerprints contain only a partial finger region, very noisy ridge patterns, and depending on the surface it is deposited, contain significant background noise. We formulate the problem of minutia extraction as a two-class classification problem and learn the descriptor using the novel formulation of GSAE. Experimental results on two publicly available latent fingerprint datasets show that the proposed algorithm yields state-of-the-art results for automated minutia extraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
13秒前
lele200218完成签到,获得积分10
14秒前
lele200218发布了新的文献求助10
17秒前
20秒前
彭于晏应助燕鹏采纳,获得10
21秒前
39秒前
Yangqx007完成签到,获得积分10
59秒前
矜天完成签到 ,获得积分10
1分钟前
1分钟前
Yoanna_UTHSC应助Yangqx007采纳,获得30
1分钟前
1分钟前
ffffan发布了新的文献求助10
1分钟前
adcc102完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
风中汽车完成签到,获得积分10
1分钟前
Marciu33发布了新的文献求助10
1分钟前
1分钟前
ffffan完成签到,获得积分10
1分钟前
英俊的铭应助qiuxuan100采纳,获得10
2分钟前
dilli完成签到 ,获得积分10
2分钟前
dcy关闭了dcy文献求助
2分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
Jack发布了新的文献求助10
3分钟前
3分钟前
3分钟前
哈哈哈哈发布了新的文献求助10
3分钟前
斯文败类应助Jack采纳,获得10
3分钟前
HS完成签到,获得积分10
3分钟前
哈哈哈哈完成签到,获得积分20
3分钟前
3分钟前
3分钟前
qiuxuan100发布了新的文献求助10
4分钟前
asdfggg发布了新的文献求助10
4分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335303
求助须知:如何正确求助?哪些是违规求助? 2964501
关于积分的说明 8613997
捐赠科研通 2643363
什么是DOI,文献DOI怎么找? 1447358
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658974