重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A Machine-Learning-Based Auction for Resource Trading in Fog Computing

计算机科学 云计算 效用计算 分布式计算 边缘计算 收入 资源管理(计算) 资源配置 计算机网络 云安全计算 操作系统 会计 业务
作者
Nguyen Cong Luong,Yutao Jiao,Ping Wang,Dusit Niyato,Dong In Kim,Zhu Han
出处
期刊:IEEE Communications Magazine [Institute of Electrical and Electronics Engineers]
卷期号:58 (3): 82-88 被引量:60
标识
DOI:10.1109/mcom.001.1900136
摘要

Fog computing is considered to be a key enabling technology for future networks. By broadening the cloud computing services to the network edge, fog computing can support various emerging applications such as IoT, big data, and blockchain with low latency and low bandwidth consumption cost. To achieve the full potential of fog computing, it is essential to design an incentive mechanism for fog computing service providers. Auction is a promising solution for the incentive mechanism design. However, it is challenging to design an optimal auction that maximizes the revenue for the providers while holding important properties: IR and IC. Therefore, this article introduces the design of an optimal auction based on deep learning for the resource allocation in fog computing. The proposed optimal auction is developed specifically to support blockchain applications. In particular, we first discuss resource management issues in fog computing. Second, we review economic and pricing models for resource management in fog computing. Third, we introduce fog computing and blockchain. Fourth, we present how to design the optimal auction by using deep learning for the fog resource allocation in the blockchain network. Simulation results demonstrate that the proposed scheme outperforms the baseline scheme (i.e., the greedy algorithm) in terms of revenue, and IC and IR violations. Thus, the proposed scheme can be used as a useful tool for the optimal resource allocation in general fog networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然夏菡完成签到,获得积分10
刚刚
克里斯发布了新的文献求助10
刚刚
kk完成签到,获得积分10
刚刚
怪兽打奥特曼完成签到,获得积分10
刚刚
Ava应助tsuki采纳,获得10
1秒前
fhkq完成签到,获得积分10
1秒前
1秒前
传奇3应助Gagaga采纳,获得10
1秒前
1秒前
123lx发布了新的文献求助10
2秒前
顾矜应助hehexi采纳,获得10
2秒前
2秒前
Essiemmm发布了新的文献求助10
3秒前
科研鼠完成签到 ,获得积分10
3秒前
贪玩晶发布了新的文献求助10
3秒前
4秒前
程绪洋发布了新的文献求助10
4秒前
zhangfugui应助HUangg采纳,获得10
4秒前
在水一方应助12345采纳,获得10
4秒前
5秒前
5秒前
锣大炮发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
成亚娜完成签到,获得积分10
6秒前
Doc_d发布了新的文献求助10
7秒前
LZH应助fanfan44390采纳,获得10
8秒前
8秒前
LBH发布了新的文献求助10
9秒前
物外完成签到,获得积分10
9秒前
9秒前
陈饱饱完成签到,获得积分10
9秒前
浮游应助木头人采纳,获得10
9秒前
chuchen123发布了新的文献求助10
10秒前
10秒前
大侠王恒完成签到,获得积分10
10秒前
优雅人士关注了科研通微信公众号
10秒前
青年才俊发布了新的文献求助10
10秒前
zzy完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466271
求助须知:如何正确求助?哪些是违规求助? 4570197
关于积分的说明 14323735
捐赠科研通 4496698
什么是DOI,文献DOI怎么找? 2463500
邀请新用户注册赠送积分活动 1452381
关于科研通互助平台的介绍 1427516