The aim of this study was to identify dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from salmon skin collagen hydrolysate, and to evaluate the possible inhibition mechanism of DPP-IV and peptide. Salmon skin collagen was hydrolyzed by pepsin, trypsin, papain, or Alcalase 2.4 L, separately. Trypsin hydrolysate (10 mg/mL) showed the highest inhibitory activity of 66.12 ± 0.68%. The hydrolysate was separated into three fractions by ultrafiltration, and the inhibitory IC50 of M1 (molecular weight <3 kDa) was 1.54 ± 0.06 mg/mL. M1 was separated by gel chromatography and RP-HPLC; A10 was the highest inhibitory fraction in the 12 fractions, i.e., IC50 was 0.79 ± 0.13 mg/mL. A novel peptide LDKVFR with the IC50 value of 0.1 ± 0.03 mg/mL (128.71 μM) was identified from A10. Molecular docking revealed that six hydrogen bonds and eight hydrophobic interactions between LDKVFR and DPP-IV were contributed to DPP-IV inhibition.