DeepSplit: Dynamic Splitting of Collaborative Edge-Cloud Convolutional Neural Networks

云计算 计算机科学 带宽(计算) GSM演进的增强数据速率 卷积神经网络 边缘计算 边缘设备 算法 计算机网络 人工智能 操作系统
作者
Rishabh Mehta,Rajeev Shorey
标识
DOI:10.1109/comsnets48256.2020.9027432
摘要

CNNs (Convolutional Neural Networks) can have a large number of parameters, thereby having high storage and computational requirements. These requirements are not typically satisfied by resource-constrained edge devices. Thus, current industry practice for making decisions at edge include transferring visual data from edge to cloud nodes, making prediction on that data with a CNN processed in the cloud and return the output to edge devices. There are two problems with this approach - Sending visual data from edge to cloud requires high bandwidth between edge and cloud, and we are not making use of the computational resources available at edge. One solution to this problem is to split the CNN between edge and cloud. The efficient way to split CNN has yet to be investigated in detail. In this paper, we propose a novel CNN splitting algorithm that efficiently splits CNN between edge and cloud with the sole objective of reducing bandwidth consumption. We consider various parameters such as task load at edge, input image dimensions and bandwidth constraints in order to choose the best splitting layer. Through experiments, we show that to optimize our objective function, CNN splitting should only be made at layers whose output dimensions are lower than input image dimensions. A random partitioning of layers between edge and cloud might result in increased bandwidth consumption. The algorithm proposed in this paper dynamically chooses the best CNN splitting layer and moves CNN layers between edge and cloud as and when required, thus allowing multitasking at edge while optimizing bandwidth consumption. We are able to perform such tasks without any loss of prediction accuracy since we do not modify the pretrained CNN architecture that we use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
磊磊完成签到,获得积分10
3秒前
yyy完成签到 ,获得积分10
5秒前
12秒前
昭歆钰完成签到 ,获得积分10
12秒前
scarlet完成签到 ,获得积分10
16秒前
songf11完成签到,获得积分10
17秒前
zhongying完成签到 ,获得积分10
19秒前
阿分完成签到,获得积分10
19秒前
jying完成签到,获得积分10
19秒前
SPLjoker完成签到,获得积分10
21秒前
fay1987完成签到,获得积分10
21秒前
阿分发布了新的文献求助10
22秒前
yyh218完成签到,获得积分10
22秒前
22秒前
李爱国应助tangyu采纳,获得20
24秒前
yrheong发布了新的文献求助10
25秒前
风信子deon01完成签到,获得积分10
31秒前
niko完成签到,获得积分10
32秒前
勤恳的书文完成签到 ,获得积分10
33秒前
chen完成签到 ,获得积分10
34秒前
花生完成签到 ,获得积分10
36秒前
lizef完成签到 ,获得积分10
43秒前
doclarrin完成签到 ,获得积分10
44秒前
小伙子完成签到,获得积分10
49秒前
诗蕊完成签到 ,获得积分10
51秒前
Hina完成签到,获得积分10
55秒前
alixy完成签到,获得积分10
57秒前
00完成签到 ,获得积分10
57秒前
57秒前
chi完成签到 ,获得积分10
1分钟前
Murphy发布了新的文献求助30
1分钟前
柚C美式完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
北城完成签到 ,获得积分10
1分钟前
miracle完成签到 ,获得积分10
1分钟前
会飞的鱼完成签到,获得积分10
1分钟前
多托郭完成签到 ,获得积分10
1分钟前
李爱国应助可靠猕猴桃采纳,获得10
1分钟前
Lesterem完成签到 ,获得积分10
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162364
求助须知:如何正确求助?哪些是违规求助? 2813350
关于积分的说明 7899821
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316556
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142