DeepSplit: Dynamic Splitting of Collaborative Edge-Cloud Convolutional Neural Networks

云计算 计算机科学 带宽(计算) GSM演进的增强数据速率 卷积神经网络 边缘计算 边缘设备 算法 计算机网络 人工智能 操作系统
作者
Rishabh Mehta,Rajeev Shorey
标识
DOI:10.1109/comsnets48256.2020.9027432
摘要

CNNs (Convolutional Neural Networks) can have a large number of parameters, thereby having high storage and computational requirements. These requirements are not typically satisfied by resource-constrained edge devices. Thus, current industry practice for making decisions at edge include transferring visual data from edge to cloud nodes, making prediction on that data with a CNN processed in the cloud and return the output to edge devices. There are two problems with this approach - Sending visual data from edge to cloud requires high bandwidth between edge and cloud, and we are not making use of the computational resources available at edge. One solution to this problem is to split the CNN between edge and cloud. The efficient way to split CNN has yet to be investigated in detail. In this paper, we propose a novel CNN splitting algorithm that efficiently splits CNN between edge and cloud with the sole objective of reducing bandwidth consumption. We consider various parameters such as task load at edge, input image dimensions and bandwidth constraints in order to choose the best splitting layer. Through experiments, we show that to optimize our objective function, CNN splitting should only be made at layers whose output dimensions are lower than input image dimensions. A random partitioning of layers between edge and cloud might result in increased bandwidth consumption. The algorithm proposed in this paper dynamically chooses the best CNN splitting layer and moves CNN layers between edge and cloud as and when required, thus allowing multitasking at edge while optimizing bandwidth consumption. We are able to perform such tasks without any loss of prediction accuracy since we do not modify the pretrained CNN architecture that we use.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陌染完成签到,获得积分10
1秒前
飞羽完成签到 ,获得积分10
1秒前
张晓娜完成签到,获得积分10
1秒前
Jiaying完成签到 ,获得积分10
2秒前
Orange应助困得晕乎乎采纳,获得10
2秒前
2秒前
zxc完成签到,获得积分10
3秒前
glacial完成签到,获得积分10
3秒前
末岛完成签到,获得积分10
3秒前
cloud完成签到 ,获得积分10
4秒前
卷发麦麦发布了新的文献求助10
5秒前
5秒前
小马甲应助逆流的鱼采纳,获得10
5秒前
春儿完成签到,获得积分10
6秒前
现代的芹完成签到,获得积分10
6秒前
烟花应助侯卜文采纳,获得10
7秒前
7秒前
7秒前
王王完成签到,获得积分10
7秒前
stinkyfish发布了新的文献求助10
7秒前
7秒前
8秒前
隐形曼青应助GS_lly采纳,获得10
8秒前
八八小葵完成签到,获得积分10
9秒前
朱剑洪完成签到,获得积分10
9秒前
ALonFan发布了新的文献求助10
9秒前
9秒前
10秒前
zsm668发布了新的文献求助10
10秒前
PinKing发布了新的文献求助10
10秒前
香蕉觅云应助hanxin采纳,获得10
10秒前
10秒前
bliss发布了新的文献求助10
11秒前
科研迪完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
IU丞发布了新的文献求助20
11秒前
吉不得发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444