DeepSplit: Dynamic Splitting of Collaborative Edge-Cloud Convolutional Neural Networks

云计算 计算机科学 带宽(计算) GSM演进的增强数据速率 卷积神经网络 边缘计算 边缘设备 算法 计算机网络 人工智能 操作系统
作者
Rishabh Mehta,Rajeev Shorey
标识
DOI:10.1109/comsnets48256.2020.9027432
摘要

CNNs (Convolutional Neural Networks) can have a large number of parameters, thereby having high storage and computational requirements. These requirements are not typically satisfied by resource-constrained edge devices. Thus, current industry practice for making decisions at edge include transferring visual data from edge to cloud nodes, making prediction on that data with a CNN processed in the cloud and return the output to edge devices. There are two problems with this approach - Sending visual data from edge to cloud requires high bandwidth between edge and cloud, and we are not making use of the computational resources available at edge. One solution to this problem is to split the CNN between edge and cloud. The efficient way to split CNN has yet to be investigated in detail. In this paper, we propose a novel CNN splitting algorithm that efficiently splits CNN between edge and cloud with the sole objective of reducing bandwidth consumption. We consider various parameters such as task load at edge, input image dimensions and bandwidth constraints in order to choose the best splitting layer. Through experiments, we show that to optimize our objective function, CNN splitting should only be made at layers whose output dimensions are lower than input image dimensions. A random partitioning of layers between edge and cloud might result in increased bandwidth consumption. The algorithm proposed in this paper dynamically chooses the best CNN splitting layer and moves CNN layers between edge and cloud as and when required, thus allowing multitasking at edge while optimizing bandwidth consumption. We are able to perform such tasks without any loss of prediction accuracy since we do not modify the pretrained CNN architecture that we use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助sunmcxz采纳,获得10
1秒前
fighting完成签到,获得积分10
1秒前
简单又夏完成签到,获得积分10
1秒前
LeeHx完成签到,获得积分10
2秒前
Oct_Y完成签到,获得积分10
2秒前
3秒前
3秒前
zgt01发布了新的文献求助10
3秒前
烟花应助duou采纳,获得10
3秒前
ARomeo完成签到,获得积分10
4秒前
景妙海完成签到 ,获得积分10
4秒前
obito发布了新的文献求助10
4秒前
4秒前
4秒前
6秒前
青春发布了新的文献求助50
6秒前
Candy完成签到,获得积分10
6秒前
7秒前
俗丨驳回了wlscj应助
7秒前
7秒前
7秒前
无奈敏发布了新的文献求助10
8秒前
从全世界路过完成签到 ,获得积分10
9秒前
舒适傲白发布了新的文献求助10
10秒前
icey发布了新的文献求助10
10秒前
WStarry完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
嘉子发布了新的文献求助10
13秒前
13秒前
慕青应助安详的小凝采纳,获得10
14秒前
科研通AI2S应助能干智宸采纳,获得10
14秒前
惠飞薇完成签到 ,获得积分10
14秒前
14秒前
17秒前
超帅远望完成签到,获得积分10
18秒前
火星上雁枫完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337