DeepSplit: Dynamic Splitting of Collaborative Edge-Cloud Convolutional Neural Networks

云计算 计算机科学 带宽(计算) GSM演进的增强数据速率 卷积神经网络 边缘计算 边缘设备 算法 计算机网络 人工智能 操作系统
作者
Rishabh Mehta,Rajeev Shorey
标识
DOI:10.1109/comsnets48256.2020.9027432
摘要

CNNs (Convolutional Neural Networks) can have a large number of parameters, thereby having high storage and computational requirements. These requirements are not typically satisfied by resource-constrained edge devices. Thus, current industry practice for making decisions at edge include transferring visual data from edge to cloud nodes, making prediction on that data with a CNN processed in the cloud and return the output to edge devices. There are two problems with this approach - Sending visual data from edge to cloud requires high bandwidth between edge and cloud, and we are not making use of the computational resources available at edge. One solution to this problem is to split the CNN between edge and cloud. The efficient way to split CNN has yet to be investigated in detail. In this paper, we propose a novel CNN splitting algorithm that efficiently splits CNN between edge and cloud with the sole objective of reducing bandwidth consumption. We consider various parameters such as task load at edge, input image dimensions and bandwidth constraints in order to choose the best splitting layer. Through experiments, we show that to optimize our objective function, CNN splitting should only be made at layers whose output dimensions are lower than input image dimensions. A random partitioning of layers between edge and cloud might result in increased bandwidth consumption. The algorithm proposed in this paper dynamically chooses the best CNN splitting layer and moves CNN layers between edge and cloud as and when required, thus allowing multitasking at edge while optimizing bandwidth consumption. We are able to perform such tasks without any loss of prediction accuracy since we do not modify the pretrained CNN architecture that we use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助落落采纳,获得10
2秒前
67发布了新的文献求助10
2秒前
2秒前
溜溜完成签到,获得积分10
2秒前
xixi完成签到 ,获得积分10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
撒上咖啡应助科研通管家采纳,获得10
3秒前
RC_Wang应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
琪琪扬扬发布了新的文献求助10
3秒前
sutharsons应助科研通管家采纳,获得30
3秒前
orixero应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
清爽老九应助科研通管家采纳,获得20
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
hui发布了新的文献求助30
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
5秒前
迟大猫应助若狂采纳,获得10
5秒前
11111发布了新的文献求助30
5秒前
溜溜发布了新的文献求助10
6秒前
7秒前
wanli445完成签到,获得积分10
8秒前
科研通AI2S应助satchzhao采纳,获得10
8秒前
是小程啊完成签到 ,获得积分10
8秒前
琪琪扬扬完成签到,获得积分10
9秒前
11111完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808