亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DeepSplit: Dynamic Splitting of Collaborative Edge-Cloud Convolutional Neural Networks

云计算 计算机科学 带宽(计算) GSM演进的增强数据速率 卷积神经网络 边缘计算 边缘设备 算法 计算机网络 人工智能 操作系统
作者
Rishabh Mehta,Rajeev Shorey
标识
DOI:10.1109/comsnets48256.2020.9027432
摘要

CNNs (Convolutional Neural Networks) can have a large number of parameters, thereby having high storage and computational requirements. These requirements are not typically satisfied by resource-constrained edge devices. Thus, current industry practice for making decisions at edge include transferring visual data from edge to cloud nodes, making prediction on that data with a CNN processed in the cloud and return the output to edge devices. There are two problems with this approach - Sending visual data from edge to cloud requires high bandwidth between edge and cloud, and we are not making use of the computational resources available at edge. One solution to this problem is to split the CNN between edge and cloud. The efficient way to split CNN has yet to be investigated in detail. In this paper, we propose a novel CNN splitting algorithm that efficiently splits CNN between edge and cloud with the sole objective of reducing bandwidth consumption. We consider various parameters such as task load at edge, input image dimensions and bandwidth constraints in order to choose the best splitting layer. Through experiments, we show that to optimize our objective function, CNN splitting should only be made at layers whose output dimensions are lower than input image dimensions. A random partitioning of layers between edge and cloud might result in increased bandwidth consumption. The algorithm proposed in this paper dynamically chooses the best CNN splitting layer and moves CNN layers between edge and cloud as and when required, thus allowing multitasking at edge while optimizing bandwidth consumption. We are able to perform such tasks without any loss of prediction accuracy since we do not modify the pretrained CNN architecture that we use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助大大彬采纳,获得10
6秒前
孤独含蕾完成签到 ,获得积分10
10秒前
AliEmbark完成签到,获得积分10
18秒前
贪玩火锅完成签到 ,获得积分10
21秒前
龙泉完成签到 ,获得积分10
24秒前
清爽的机器猫完成签到 ,获得积分10
24秒前
nenoaowu完成签到,获得积分20
33秒前
幸福萝完成签到,获得积分10
34秒前
cccccl驳回了程宇应助
44秒前
slayers应助科研通管家采纳,获得10
46秒前
dong应助科研通管家采纳,获得10
46秒前
CodeCraft应助科研通管家采纳,获得10
46秒前
50秒前
小蘑菇应助sq_gong采纳,获得10
1分钟前
1分钟前
nanojun发布了新的文献求助10
1分钟前
只如初完成签到,获得积分10
1分钟前
研友_VZG7GZ应助Ni采纳,获得10
1分钟前
春樹暮雲完成签到 ,获得积分10
1分钟前
1分钟前
西洛他唑发布了新的文献求助10
1分钟前
WuFen完成签到 ,获得积分10
1分钟前
所所应助Ying采纳,获得10
1分钟前
哈哈哈哈完成签到 ,获得积分10
1分钟前
wyp关闭了wyp文献求助
1分钟前
白日焰火完成签到 ,获得积分10
1分钟前
Owen应助呵呵采纳,获得10
1分钟前
在水一方应助冷酷采纳,获得10
1分钟前
1分钟前
1分钟前
大大彬发布了新的文献求助10
2分钟前
sq_gong发布了新的文献求助10
2分钟前
自信号厂完成签到 ,获得积分10
2分钟前
Jacquielin完成签到 ,获得积分10
2分钟前
大大彬完成签到,获得积分10
2分钟前
Ava应助Brosiga采纳,获得10
2分钟前
Doraemon完成签到 ,获得积分10
2分钟前
glemy发布了新的文献求助30
2分钟前
慕青应助科研通管家采纳,获得50
2分钟前
dong应助科研通管家采纳,获得10
2分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994995
求助须知:如何正确求助?哪些是违规求助? 3535103
关于积分的说明 11267066
捐赠科研通 3274866
什么是DOI,文献DOI怎么找? 1806498
邀请新用户注册赠送积分活动 883335
科研通“疑难数据库(出版商)”最低求助积分说明 809764