DeepSplit: Dynamic Splitting of Collaborative Edge-Cloud Convolutional Neural Networks

云计算 计算机科学 带宽(计算) GSM演进的增强数据速率 卷积神经网络 边缘计算 边缘设备 算法 计算机网络 人工智能 操作系统
作者
Rishabh Mehta,Rajeev Shorey
标识
DOI:10.1109/comsnets48256.2020.9027432
摘要

CNNs (Convolutional Neural Networks) can have a large number of parameters, thereby having high storage and computational requirements. These requirements are not typically satisfied by resource-constrained edge devices. Thus, current industry practice for making decisions at edge include transferring visual data from edge to cloud nodes, making prediction on that data with a CNN processed in the cloud and return the output to edge devices. There are two problems with this approach - Sending visual data from edge to cloud requires high bandwidth between edge and cloud, and we are not making use of the computational resources available at edge. One solution to this problem is to split the CNN between edge and cloud. The efficient way to split CNN has yet to be investigated in detail. In this paper, we propose a novel CNN splitting algorithm that efficiently splits CNN between edge and cloud with the sole objective of reducing bandwidth consumption. We consider various parameters such as task load at edge, input image dimensions and bandwidth constraints in order to choose the best splitting layer. Through experiments, we show that to optimize our objective function, CNN splitting should only be made at layers whose output dimensions are lower than input image dimensions. A random partitioning of layers between edge and cloud might result in increased bandwidth consumption. The algorithm proposed in this paper dynamically chooses the best CNN splitting layer and moves CNN layers between edge and cloud as and when required, thus allowing multitasking at edge while optimizing bandwidth consumption. We are able to perform such tasks without any loss of prediction accuracy since we do not modify the pretrained CNN architecture that we use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助wxs采纳,获得10
刚刚
zhengyuetong发布了新的文献求助10
刚刚
吞金完成签到,获得积分10
刚刚
科研通AI5应助一根采纳,获得10
1秒前
迷你的珠完成签到,获得积分20
1秒前
Ryuan发布了新的文献求助10
1秒前
木日发布了新的文献求助10
1秒前
成永福完成签到,获得积分10
1秒前
结实星星发布了新的文献求助10
1秒前
cc完成签到 ,获得积分10
1秒前
早日毕业完成签到 ,获得积分10
2秒前
Wendy关注了科研通微信公众号
2秒前
重要的平灵完成签到 ,获得积分10
2秒前
zhu发布了新的文献求助10
3秒前
华仔应助gxj采纳,获得10
3秒前
Sun完成签到,获得积分10
3秒前
末位牛马完成签到,获得积分10
4秒前
dachengzi完成签到,获得积分10
4秒前
CR7应助果车采纳,获得20
5秒前
莫名完成签到,获得积分10
6秒前
6秒前
孟一完成签到,获得积分10
7秒前
7秒前
7秒前
9秒前
Twistzz完成签到,获得积分10
9秒前
爆米花应助阳佟问寒采纳,获得10
9秒前
yk完成签到,获得积分10
9秒前
莫飞完成签到,获得积分10
9秒前
Mircale发布了新的文献求助10
10秒前
浮游应助杨好圆采纳,获得10
10秒前
jxr完成签到,获得积分10
10秒前
Ting完成签到,获得积分10
10秒前
科研通AI6应助喜悦的广山采纳,获得10
10秒前
11秒前
11秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4599250
求助须知:如何正确求助?哪些是违规求助? 4009968
关于积分的说明 12414035
捐赠科研通 3689591
什么是DOI,文献DOI怎么找? 2033925
邀请新用户注册赠送积分活动 1067094
科研通“疑难数据库(出版商)”最低求助积分说明 952171