Relationships Between Social, Physical, and Psychological Factors in Older Persons: Frailty as an Outcome in Network Analysis

医学 老年学 社会支持 社交网络(社会语言学) 腰围 萧条(经济学) 身体残疾 物理疗法 肥胖 心理学 宏观经济学 政治学 内科学 法学 经济 心理治疗师 社会化媒体
作者
Daniel Eduardo da Cunha Leme,Erika Valeska da Costa Alves,André Fattori
出处
期刊:Journal of the American Medical Directors Association [Elsevier]
卷期号:21 (9): 1309-1315.e4 被引量:22
标识
DOI:10.1016/j.jamda.2020.02.005
摘要

Objective Frailty is a multifactorial syndrome characterized by social, physical, and psychological stressors. Network analysis is a graphical statistical technique that can contribute to the understanding of this complex, multifactorial phenomenon. The aim of this study was to investigate the relationships between social, physical, and psychological factors and frailty in older persons. Design A cross-sectional study. Settings and Participants A total of 2588 community-dwelling older persons from the FIBRA (Frailty in Brazilian Older Persons) 2008 to 2009 study. Measures Participants were assessed for sociodemographic variables, physical and mental health, and the frailty phenotype. Partial correlation network analysis with the Graphical Least Absolute Shrinkage and Selection Operator (glasso) estimator was performed to determine the relationships between social, physical, and psychological factors and frailty. Results Mean participant age was 72.31 years, 7.0% were frail, and 50.6% were prefrail. In the network structure, frailty correlated most strongly with physical and psychological factors such as diabetes and depression and exhibited greater proximity to physical factors such as disability, urinary incontinence, and cardiovascular risk as measured by waist-to-hip ratio. Conclusions and Implications The analytical strategy used can provide information for specific subpopulations of interest and here confirmed that frailty is not uniformly determined but associated with different psychological and physical health factors, thereby allowing better understanding and management of this condition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
青山发布了新的文献求助10
1秒前
郭莹莹发布了新的文献求助10
1秒前
勤奋凡之完成签到,获得积分10
2秒前
猪猪侠应助薄荷采纳,获得10
3秒前
脑司机完成签到,获得积分10
4秒前
HOAN应助洋芋采纳,获得20
4秒前
4秒前
111完成签到,获得积分10
4秒前
shenghao完成签到,获得积分10
4秒前
充电宝应助可燃冰采纳,获得10
4秒前
HYK完成签到,获得积分10
4秒前
4秒前
十是十完成签到,获得积分20
5秒前
灵巧的十八完成签到,获得积分10
5秒前
6秒前
111发布了新的文献求助10
7秒前
xiaojiu完成签到,获得积分10
7秒前
子凯发布了新的文献求助10
8秒前
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
华仔应助喜悦的迎波采纳,获得10
8秒前
冷艳的班应助科研通管家采纳,获得10
8秒前
埋头赶路应助科研通管家采纳,获得10
8秒前
zhonglv7应助科研通管家采纳,获得10
9秒前
annabelle应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得20
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得30
9秒前
ding应助科研通管家采纳,获得30
9秒前
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
埋头赶路应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
liuguanfeng完成签到,获得积分20
10秒前
dd发布了新的文献求助10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666928
求助须知:如何正确求助?哪些是违规求助? 4883518
关于积分的说明 15118330
捐赠科研通 4825864
什么是DOI,文献DOI怎么找? 2583597
邀请新用户注册赠送积分活动 1537760
关于科研通互助平台的介绍 1495956