Volunteer Assisted Collaborative Offloading and Resource Allocation in Vehicular Edge Computing

服务器 斯塔克伯格竞赛 计算卸载 计算机科学 资源配置 边缘计算 计算 计算机网络 任务(项目管理) GSM演进的增强数据速率 移动边缘计算 分布式计算 人工智能 工程类 算法 数学 数理经济学 系统工程
作者
Feng Zeng,Qiao Chen,Lin Meng,Jinsong Wu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:22 (6): 3247-3257 被引量:104
标识
DOI:10.1109/tits.2020.2980422
摘要

As a promising new paradigm, Vehicular Edge Computing (VEC) can improve the QoS of vehicular applications by computation offloading. However, with more and more computation-intensive vehicular applications, VEC servers face the challenges of limited resources. In this paper, we study how to effectively and economically utilize the idle resources in volunteer vehicles to handle the overloaded tasks in VEC servers. First, we present a model of volunteer assisted vehicular edge computing, in which the cost and utility functions are defined for requesting vehicles and VEC servers, and volunteer vehicles are encouraged to assist the overloaded VEC servers via obtaining rewards from VEC servers. Then, based on Stackelberg game, we analyze the interactions between requesting vehicles and VEC servers, and find the optimal strategies for them. Furthermore, we prove theoretically that the Stackelberg game between requesting vehicles and VEC servers has a unique Stackelberg equilibrium, and propose a fast searching algorithm based on genetic algorithm to find the best pricing strategy for the VEC server. In addition, to maximize the reward of volunteer vehicles, we propose the volunteer task assignment algorithm for optimal mapping between the tasks and volunteer alliances. Finally, the effectiveness of the proposed scheme is demonstrated through a large number of simulations. Compared with other schemes, the proposed scheme can reduce the offloading cost of vehicles and improve the utility of VEC servers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助活泼媚颜采纳,获得10
刚刚
1秒前
1秒前
1秒前
朱鸿超应助素颜采纳,获得10
2秒前
John完成签到,获得积分10
2秒前
ww发布了新的文献求助10
3秒前
风趣雪一发布了新的文献求助10
4秒前
积极的尔白完成签到 ,获得积分10
4秒前
dn发布了新的文献求助10
5秒前
英俊的铭应助leyi采纳,获得10
9秒前
9秒前
10秒前
10秒前
华仔应助ww采纳,获得10
14秒前
FaFa发布了新的文献求助10
15秒前
15秒前
ZY发布了新的文献求助10
16秒前
111发布了新的文献求助30
16秒前
18秒前
18秒前
jin发布了新的文献求助10
19秒前
科研通AI6应助moon采纳,获得10
19秒前
19秒前
冷酷的苗条完成签到 ,获得积分10
20秒前
小蘑菇应助LI采纳,获得10
20秒前
JamesPei应助51采纳,获得10
21秒前
Celeste应助Am采纳,获得10
21秒前
晓榮完成签到,获得积分20
21秒前
大喜子发布了新的文献求助10
21秒前
22秒前
meteor发布了新的文献求助10
22秒前
leec完成签到,获得积分10
23秒前
田様应助李大柱采纳,获得10
24秒前
26秒前
luo发布了新的文献求助10
27秒前
28秒前
程青青完成签到,获得积分10
30秒前
32秒前
33秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384400
求助须知:如何正确求助?哪些是违规求助? 4507243
关于积分的说明 14027286
捐赠科研通 4416893
什么是DOI,文献DOI怎么找? 2426157
邀请新用户注册赠送积分活动 1418940
关于科研通互助平台的介绍 1397276