反铁磁性
凝聚态物理
自旋电子学
基态
电场
铁磁性
物理
联轴节(管道)
结晶学
材料科学
化学
原子物理学
量子力学
冶金
作者
Thi Phuong Thao Nguyen,Kunihiko Yamauchi,Tamio Oguchi,Danila Amoroso,Silvia Picozzi
出处
期刊:Physical review
日期:2021-07-13
卷期号:104 (1)
被引量:16
标识
DOI:10.1103/physrevb.104.014414
摘要
The magnetic properties of the two-dimensional ${\mathrm{VI}}_{3}$ bilayer are the focus of our first-principles analysis, highlighting the role of ${t}_{2g}$ orbital splitting and carried out in comparison with the ${\mathrm{CrI}}_{3}$ prototypical case, where the splitting is negligible. In ${\mathrm{VI}}_{3}$ bilayers, the empty ${a}_{1g}$ state is found to play a crucial role in both stabilizing the insulating state and in determining the interlayer magnetic interaction. Indeed, an analysis based on maximally localized Wannier functions allows one to evaluate the interlayer exchange interactions in two different ${\mathrm{VI}}_{3}$ stackings (labeled AB and ${\mathrm{AB}}^{\ensuremath{'}}$), to interpret the results in terms of the virtual-hopping mechanism, and to highlight the strongest hopping channels underlying the magnetic interlayer coupling. Upon application of electric fields perpendicular to the slab, we find that the magnetic ground state in the ${\mathrm{AB}}^{\ensuremath{'}}$ stacking can be switched from antiferromagnetic to ferromagnetic, suggesting the ${\mathrm{VI}}_{3}$ bilayer as an appealing candidate for electric-field-driven miniaturized spintronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI