An algorithm for using deep learning convolutional neural networks with three dimensional depth sensor imaging in scoliosis detection

科布 柯布角 脊柱侧凸 医学 均方误差 相关系数 算法 皮尔逊积矩相关系数 人工智能 射线照相术 随机森林 平均绝对百分比误差 统计 数学 口腔正畸科 外科 计算机科学 遗传学 生物
作者
Terufumi Kokabu,Satoshi Kanai,Noriaki Kawakami,Koki Uno,Toshiaki Kotani,Teppei Suzuki,Hiroyuki Tachi,Yoichi M. Ito,Norimasa Iwasaki,Hideki Sudo
出处
期刊:The Spine Journal [Elsevier]
卷期号:21 (6): 980-987 被引量:30
标识
DOI:10.1016/j.spinee.2021.01.022
摘要

BACKGROUND CONTEXTTimely intervention in growing individuals, such as brace treatment, relies on early detection of adolescent idiopathic scoliosis (AIS). To this end, several screening methods have been implemented. However, these methods have limitations in predicting the Cobb angle.PURPOSEThis study aimed to evaluate the performance of a three-dimensional depth sensor imaging system with a deep learning algorithm, in predicting the Cobb angle in AIS.STUDY DESIGNRetrospective analysis of prospectively collected, consecutive, nonrandomized series of patients at five scoliosis centers in Japan.PATIENT SAMPLEOne hundred and-sixty human subjects suspected to have AIS were included.OUTCOME MEASURESPatient demographics, radiographic measurements, and predicted Cobb angle derived from the deep learning algorithm were the outcome measures for this study.METHODSOne hundred and sixty data files were shuffled into five datasets with 32 data files at random (dataset 1, 2, 3, 4, and 5) and five-fold cross validation was performed. The relationships between the actual and predicted Cobb angles were calculated using Pearson's correlation coefficient analyses. The prediction performances of the network models were evaluated using mean absolute error and root mean square error between the actual and predicted Cobb angles. The shuffling into five datasets and five-fold cross validation was conducted ten times. There were no study-specific biases related to conflicts of interest.RESULTSThe correlation between the actual and the mean predicted Cobb angles was 0.91. The mean absolute error and root mean square error were 4.0° and 5.4°, respectively. The accuracy of the mean predicted Cobb angle was 94% for identifying a Cobb angle of ≥10° and 89% for that of ≥20°.CONCLUSIONSThe three-dimensional depth sensor imaging system with its newly innovated convolutional neural network for regression is objective and has significant ability to predict the Cobb angle in children and adolescents. This system is expected to be used for screening scoliosis in clinics or physical examination at schools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zzz完成签到,获得积分10
1秒前
2秒前
strong.quite完成签到,获得积分10
2秒前
meimei完成签到 ,获得积分10
3秒前
xy完成签到,获得积分10
3秒前
无痕完成签到,获得积分10
5秒前
6秒前
7秒前
慧海拾穗完成签到 ,获得积分10
7秒前
pooh完成签到,获得积分10
7秒前
专注的夜蓉完成签到,获得积分10
9秒前
10秒前
zycdx3906完成签到,获得积分20
11秒前
乐乐发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
隐形曼青应助射天狼采纳,获得10
14秒前
彭于晏应助平淡的邪欢采纳,获得10
14秒前
努力勤奋完成签到,获得积分10
17秒前
bryceeluo应助zycdx3906采纳,获得10
18秒前
18秒前
21秒前
科研的猫发布了新的文献求助10
26秒前
阿莫西林胶囊完成签到,获得积分10
27秒前
eric完成签到 ,获得积分10
29秒前
30秒前
SciGPT应助pooh采纳,获得10
31秒前
从容灭绝应助chai采纳,获得10
32秒前
33秒前
轻松的芯完成签到 ,获得积分10
34秒前
小白完成签到,获得积分10
35秒前
情怀应助王楠采纳,获得10
36秒前
starry发布了新的文献求助10
36秒前
yueyueyahoo发布了新的文献求助20
36秒前
37秒前
JamesPei应助只只采纳,获得10
38秒前
39秒前
顾难摧完成签到 ,获得积分10
40秒前
40秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
Ethnicities: Media, Health, and Coping 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3086063
求助须知:如何正确求助?哪些是违规求助? 2738975
关于积分的说明 7552581
捐赠科研通 2388790
什么是DOI,文献DOI怎么找? 1266693
科研通“疑难数据库(出版商)”最低求助积分说明 613547
版权声明 598591