An algorithm for using deep learning convolutional neural networks with three dimensional depth sensor imaging in scoliosis detection

科布 柯布角 脊柱侧凸 医学 均方误差 相关系数 算法 皮尔逊积矩相关系数 人工智能 射线照相术 随机森林 平均绝对百分比误差 统计 数学 口腔正畸科 外科 计算机科学 遗传学 生物
作者
Terufumi Kokabu,Satoshi Kanai,Noriaki Kawakami,Koki Uno,Toshiaki Kotani,Teppei Suzuki,Hiroyuki Tachi,Yoichi M. Ito,Norimasa Iwasaki,Hideki Sudo
出处
期刊:The Spine Journal [Elsevier]
卷期号:21 (6): 980-987 被引量:30
标识
DOI:10.1016/j.spinee.2021.01.022
摘要

BACKGROUND CONTEXTTimely intervention in growing individuals, such as brace treatment, relies on early detection of adolescent idiopathic scoliosis (AIS). To this end, several screening methods have been implemented. However, these methods have limitations in predicting the Cobb angle.PURPOSEThis study aimed to evaluate the performance of a three-dimensional depth sensor imaging system with a deep learning algorithm, in predicting the Cobb angle in AIS.STUDY DESIGNRetrospective analysis of prospectively collected, consecutive, nonrandomized series of patients at five scoliosis centers in Japan.PATIENT SAMPLEOne hundred and-sixty human subjects suspected to have AIS were included.OUTCOME MEASURESPatient demographics, radiographic measurements, and predicted Cobb angle derived from the deep learning algorithm were the outcome measures for this study.METHODSOne hundred and sixty data files were shuffled into five datasets with 32 data files at random (dataset 1, 2, 3, 4, and 5) and five-fold cross validation was performed. The relationships between the actual and predicted Cobb angles were calculated using Pearson's correlation coefficient analyses. The prediction performances of the network models were evaluated using mean absolute error and root mean square error between the actual and predicted Cobb angles. The shuffling into five datasets and five-fold cross validation was conducted ten times. There were no study-specific biases related to conflicts of interest.RESULTSThe correlation between the actual and the mean predicted Cobb angles was 0.91. The mean absolute error and root mean square error were 4.0° and 5.4°, respectively. The accuracy of the mean predicted Cobb angle was 94% for identifying a Cobb angle of ≥10° and 89% for that of ≥20°.CONCLUSIONSThe three-dimensional depth sensor imaging system with its newly innovated convolutional neural network for regression is objective and has significant ability to predict the Cobb angle in children and adolescents. This system is expected to be used for screening scoliosis in clinics or physical examination at schools.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李先生完成签到 ,获得积分10
1秒前
古藤完成签到 ,获得积分10
2秒前
风中的碧玉完成签到,获得积分10
3秒前
nini完成签到 ,获得积分10
4秒前
506407完成签到,获得积分10
5秒前
蓝天发布了新的文献求助10
6秒前
科研通AI6应助加油采纳,获得10
7秒前
kroll发布了新的文献求助10
7秒前
LL完成签到 ,获得积分10
8秒前
9秒前
9秒前
Carolina完成签到,获得积分10
10秒前
繁荣的立果完成签到,获得积分10
15秒前
危机的阁发布了新的文献求助10
16秒前
晓汁完成签到 ,获得积分10
19秒前
19秒前
共享精神应助白天乐夜雨采纳,获得10
20秒前
小巧寻桃发布了新的文献求助10
24秒前
交大市长完成签到,获得积分10
25秒前
今后应助刘芋叶采纳,获得10
27秒前
香蕉诗蕊应助加油采纳,获得10
28秒前
琦琦完成签到 ,获得积分10
28秒前
踏实的兔子完成签到 ,获得积分10
29秒前
搜集达人应助LHR采纳,获得10
33秒前
默默善愁发布了新的文献求助10
33秒前
凌风完成签到,获得积分10
35秒前
李嗯呐发布了新的文献求助10
35秒前
35秒前
多年以后完成签到,获得积分10
40秒前
科研通AI6应助超级瑶瑶采纳,获得10
40秒前
kuikichu完成签到,获得积分10
40秒前
黄黄黄发布了新的文献求助30
40秒前
42秒前
43秒前
文艺宛海发布了新的文献求助10
43秒前
时不我待完成签到,获得积分10
43秒前
CipherSage应助默默善愁采纳,获得10
44秒前
kroll完成签到,获得积分10
45秒前
olekravchenko应助科研通管家采纳,获得10
46秒前
田様应助科研通管家采纳,获得10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560490
求助须知:如何正确求助?哪些是违规求助? 4645747
关于积分的说明 14676028
捐赠科研通 4586936
什么是DOI,文献DOI怎么找? 2516635
邀请新用户注册赠送积分活动 1490182
关于科研通互助平台的介绍 1461055