An algorithm for using deep learning convolutional neural networks with three dimensional depth sensor imaging in scoliosis detection

科布 柯布角 脊柱侧凸 医学 均方误差 相关系数 算法 皮尔逊积矩相关系数 人工智能 射线照相术 随机森林 平均绝对百分比误差 统计 数学 口腔正畸科 外科 计算机科学 遗传学 生物
作者
Terufumi Kokabu,Satoshi Kanai,Noriaki Kawakami,Koki Uno,Toshiaki Kotani,Teppei Suzuki,Hiroyuki Tachi,Yoichi M. Ito,Norimasa Iwasaki,Hideki Sudo
出处
期刊:The Spine Journal [Elsevier]
卷期号:21 (6): 980-987 被引量:30
标识
DOI:10.1016/j.spinee.2021.01.022
摘要

BACKGROUND CONTEXTTimely intervention in growing individuals, such as brace treatment, relies on early detection of adolescent idiopathic scoliosis (AIS). To this end, several screening methods have been implemented. However, these methods have limitations in predicting the Cobb angle.PURPOSEThis study aimed to evaluate the performance of a three-dimensional depth sensor imaging system with a deep learning algorithm, in predicting the Cobb angle in AIS.STUDY DESIGNRetrospective analysis of prospectively collected, consecutive, nonrandomized series of patients at five scoliosis centers in Japan.PATIENT SAMPLEOne hundred and-sixty human subjects suspected to have AIS were included.OUTCOME MEASURESPatient demographics, radiographic measurements, and predicted Cobb angle derived from the deep learning algorithm were the outcome measures for this study.METHODSOne hundred and sixty data files were shuffled into five datasets with 32 data files at random (dataset 1, 2, 3, 4, and 5) and five-fold cross validation was performed. The relationships between the actual and predicted Cobb angles were calculated using Pearson's correlation coefficient analyses. The prediction performances of the network models were evaluated using mean absolute error and root mean square error between the actual and predicted Cobb angles. The shuffling into five datasets and five-fold cross validation was conducted ten times. There were no study-specific biases related to conflicts of interest.RESULTSThe correlation between the actual and the mean predicted Cobb angles was 0.91. The mean absolute error and root mean square error were 4.0° and 5.4°, respectively. The accuracy of the mean predicted Cobb angle was 94% for identifying a Cobb angle of ≥10° and 89% for that of ≥20°.CONCLUSIONSThe three-dimensional depth sensor imaging system with its newly innovated convolutional neural network for regression is objective and has significant ability to predict the Cobb angle in children and adolescents. This system is expected to be used for screening scoliosis in clinics or physical examination at schools.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_Ze2k48发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
2秒前
2秒前
nightmare发布了新的文献求助10
3秒前
shabbow发布了新的文献求助100
3秒前
3秒前
YWJ完成签到,获得积分10
3秒前
3秒前
zklltt发布了新的文献求助10
4秒前
perfumei发布了新的文献求助10
4秒前
鲸鱼鱼发布了新的文献求助10
4秒前
林子昂发布了新的文献求助10
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
小小发布了新的文献求助20
6秒前
6秒前
咸鱼发布了新的文献求助10
6秒前
6秒前
Owen应助南兮采纳,获得10
6秒前
123发布了新的文献求助10
7秒前
hardname发布了新的文献求助10
7秒前
执着的千万完成签到,获得积分10
7秒前
贝塔发布了新的文献求助10
7秒前
小小完成签到,获得积分20
8秒前
mmol发布了新的文献求助10
8秒前
李杰发布了新的文献求助10
8秒前
没烦恼完成签到,获得积分10
8秒前
二小完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
11秒前
阳光的衫完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525966
求助须知:如何正确求助?哪些是违规求助? 4616113
关于积分的说明 14551945
捐赠科研通 4554358
什么是DOI,文献DOI怎么找? 2495803
邀请新用户注册赠送积分活动 1476217
关于科研通互助平台的介绍 1447879