An algorithm for using deep learning convolutional neural networks with three dimensional depth sensor imaging in scoliosis detection

科布 柯布角 脊柱侧凸 医学 均方误差 相关系数 算法 皮尔逊积矩相关系数 人工智能 射线照相术 随机森林 平均绝对百分比误差 统计 数学 口腔正畸科 外科 计算机科学 遗传学 生物
作者
Terufumi Kokabu,Satoshi Kanai,Noriaki Kawakami,Koki Uno,Toshiaki Kotani,Teppei Suzuki,Hiroyuki Tachi,Yoichi M. Ito,Norimasa Iwasaki,Hideki Sudo
出处
期刊:The Spine Journal [Elsevier BV]
卷期号:21 (6): 980-987 被引量:30
标识
DOI:10.1016/j.spinee.2021.01.022
摘要

BACKGROUND CONTEXTTimely intervention in growing individuals, such as brace treatment, relies on early detection of adolescent idiopathic scoliosis (AIS). To this end, several screening methods have been implemented. However, these methods have limitations in predicting the Cobb angle.PURPOSEThis study aimed to evaluate the performance of a three-dimensional depth sensor imaging system with a deep learning algorithm, in predicting the Cobb angle in AIS.STUDY DESIGNRetrospective analysis of prospectively collected, consecutive, nonrandomized series of patients at five scoliosis centers in Japan.PATIENT SAMPLEOne hundred and-sixty human subjects suspected to have AIS were included.OUTCOME MEASURESPatient demographics, radiographic measurements, and predicted Cobb angle derived from the deep learning algorithm were the outcome measures for this study.METHODSOne hundred and sixty data files were shuffled into five datasets with 32 data files at random (dataset 1, 2, 3, 4, and 5) and five-fold cross validation was performed. The relationships between the actual and predicted Cobb angles were calculated using Pearson's correlation coefficient analyses. The prediction performances of the network models were evaluated using mean absolute error and root mean square error between the actual and predicted Cobb angles. The shuffling into five datasets and five-fold cross validation was conducted ten times. There were no study-specific biases related to conflicts of interest.RESULTSThe correlation between the actual and the mean predicted Cobb angles was 0.91. The mean absolute error and root mean square error were 4.0° and 5.4°, respectively. The accuracy of the mean predicted Cobb angle was 94% for identifying a Cobb angle of ≥10° and 89% for that of ≥20°.CONCLUSIONSThe three-dimensional depth sensor imaging system with its newly innovated convolutional neural network for regression is objective and has significant ability to predict the Cobb angle in children and adolescents. This system is expected to be used for screening scoliosis in clinics or physical examination at schools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JamesPei应助美美桑内采纳,获得10
刚刚
关人土完成签到,获得积分10
刚刚
刚刚
feizhuliu完成签到,获得积分10
1秒前
高贵花瓣完成签到,获得积分10
2秒前
完美世界应助yijieLU采纳,获得10
2秒前
ding应助yijieLU采纳,获得10
2秒前
萱璇选炫发布了新的文献求助10
3秒前
丘比特应助大意的凝芙采纳,获得10
4秒前
4秒前
王三发布了新的文献求助10
5秒前
5秒前
Cecilia完成签到 ,获得积分20
5秒前
6秒前
sun发布了新的文献求助10
6秒前
faoran完成签到,获得积分10
6秒前
哈哈完成签到,获得积分10
8秒前
Ethan完成签到,获得积分10
9秒前
ewan2018发布了新的文献求助10
9秒前
科研通AI6应助VV2VV采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
科研通AI5应助yz123采纳,获得10
10秒前
山野都有路灯完成签到,获得积分20
11秒前
11秒前
11秒前
BB发布了新的文献求助10
12秒前
研友_ZbbaRZ发布了新的文献求助10
12秒前
春一又木发布了新的文献求助10
12秒前
共享精神应助一二三四采纳,获得10
13秒前
脑洞疼应助喵了个咪采纳,获得10
13秒前
超超完成签到,获得积分10
14秒前
Clement洋完成签到,获得积分10
14秒前
赤墨完成签到,获得积分10
14秒前
15秒前
脑洞疼应助喜悦的黑夜采纳,获得10
15秒前
微醺钓青鱼完成签到,获得积分10
15秒前
16秒前
见澈发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4993138
求助须知:如何正确求助?哪些是违规求助? 4240931
关于积分的说明 13212856
捐赠科研通 4036337
什么是DOI,文献DOI怎么找? 2208385
邀请新用户注册赠送积分活动 1219402
关于科研通互助平台的介绍 1137670