An algorithm for using deep learning convolutional neural networks with three dimensional depth sensor imaging in scoliosis detection

科布 柯布角 脊柱侧凸 医学 均方误差 相关系数 算法 皮尔逊积矩相关系数 人工智能 射线照相术 随机森林 平均绝对百分比误差 统计 数学 口腔正畸科 外科 计算机科学 遗传学 生物
作者
Terufumi Kokabu,Satoshi Kanai,Noriaki Kawakami,Koki Uno,Toshiaki Kotani,Teppei Suzuki,Hiroyuki Tachi,Yoichi M. Ito,Norimasa Iwasaki,Hideki Sudo
出处
期刊:The Spine Journal [Elsevier]
卷期号:21 (6): 980-987 被引量:30
标识
DOI:10.1016/j.spinee.2021.01.022
摘要

BACKGROUND CONTEXTTimely intervention in growing individuals, such as brace treatment, relies on early detection of adolescent idiopathic scoliosis (AIS). To this end, several screening methods have been implemented. However, these methods have limitations in predicting the Cobb angle.PURPOSEThis study aimed to evaluate the performance of a three-dimensional depth sensor imaging system with a deep learning algorithm, in predicting the Cobb angle in AIS.STUDY DESIGNRetrospective analysis of prospectively collected, consecutive, nonrandomized series of patients at five scoliosis centers in Japan.PATIENT SAMPLEOne hundred and-sixty human subjects suspected to have AIS were included.OUTCOME MEASURESPatient demographics, radiographic measurements, and predicted Cobb angle derived from the deep learning algorithm were the outcome measures for this study.METHODSOne hundred and sixty data files were shuffled into five datasets with 32 data files at random (dataset 1, 2, 3, 4, and 5) and five-fold cross validation was performed. The relationships between the actual and predicted Cobb angles were calculated using Pearson's correlation coefficient analyses. The prediction performances of the network models were evaluated using mean absolute error and root mean square error between the actual and predicted Cobb angles. The shuffling into five datasets and five-fold cross validation was conducted ten times. There were no study-specific biases related to conflicts of interest.RESULTSThe correlation between the actual and the mean predicted Cobb angles was 0.91. The mean absolute error and root mean square error were 4.0° and 5.4°, respectively. The accuracy of the mean predicted Cobb angle was 94% for identifying a Cobb angle of ≥10° and 89% for that of ≥20°.CONCLUSIONSThe three-dimensional depth sensor imaging system with its newly innovated convolutional neural network for regression is objective and has significant ability to predict the Cobb angle in children and adolescents. This system is expected to be used for screening scoliosis in clinics or physical examination at schools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阿屁屁猪发布了新的文献求助10
1秒前
pura卷卷发布了新的文献求助10
2秒前
领导范儿应助聪慧雪糕采纳,获得10
2秒前
Lucas应助执着的弱采纳,获得10
2秒前
2秒前
3秒前
SciGPT应助baishiyan采纳,获得10
4秒前
123发布了新的文献求助10
5秒前
GGKing完成签到 ,获得积分10
5秒前
5秒前
zhu发布了新的文献求助10
5秒前
肖0625完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
8秒前
千殇发布了新的文献求助10
8秒前
8秒前
Sean发布了新的文献求助10
9秒前
SciGPT应助阿屁屁猪采纳,获得10
9秒前
戒骄戒躁发布了新的文献求助10
10秒前
11秒前
叶航发布了新的文献求助10
11秒前
11秒前
聪慧雪糕发布了新的文献求助10
12秒前
871004188完成签到,获得积分10
12秒前
小马甲应助小墩墩采纳,获得10
13秒前
三金发布了新的文献求助10
13秒前
13秒前
14秒前
千殇完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
16秒前
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344166
求助须知:如何正确求助?哪些是违规求助? 4479497
关于积分的说明 13943155
捐赠科研通 4376560
什么是DOI,文献DOI怎么找? 2404847
邀请新用户注册赠送积分活动 1397207
关于科研通互助平台的介绍 1369579