Exciton-Plasmon Coupling and Giant Photoluminescence Enhancement in Monolayer MoS2 Through Hierarchically Designed TiO2/Au/MoS2 Ternary Core-Shell Heterostructure
材料科学
异质结
激子
光电子学
单层
光致发光
等离子体子
量子点
带隙
三元运算
作者
Larionette P. L. Mawlong,Kamal Kumar Paul,P. K. Giri
Enhancing the light coupling efficiency of large-area monolayer molybdenum disulfide (1L-MoS2) is one of the major challenges for its successful applications in optoelectronics and photonics. Herein, we demonstrate a dramatically enhanced photoluminescence (PL) emission from direct chemical vapor deposited monolayer MoS2on a fluorine-doped TiO2/Au nanoparticle plasmonic substrate, where the PL intensity is enhanced by nearly three orders of magnitude, highest among the reported values. The formation of TiO2/Au/1L-MoS2ternary core-shell heterojunction is evidenced by the high-resolution transmission electron microscopy and Raman analyses. Localized surface plasmon resonance induced enhanced absorption and improved light coupling in the system was revealed from the UV-vis absorption and Raman spectroscopy analyzes. Our studies reveal that the observed giant PL enhancement in 1L-MoS2results from two major aspects: firstly, the heavy p-doping of the MoS2lattice is caused by the transfer of the excess electrons from the MoS2to TiO2at the interface, which enhances the neutral exciton emissions and restrains the trion formation. Secondly, the localized surface plasmon in Au NPs underneath the 1L-MoS2film initiates exciton-plasmon coupling between excitons of the 1L-MoS2and surface plasmons of the Au NPs at the MoS2/Au interface. The PL and Raman analyses further confirm the p-doping effect. We isolate the contributions of plasmon enhancement from the theoretical calculation of the field enhancement factor using the effective medium approximation of plasmonic heterostructure, which is in excellent agreement with the experimental data. This work paves a way for the rational design of the plasmonic heterostructure for the effective improvement in the light emission efficiency of 1L-MoS2, and may enable engineering the different contributions to enhance the optoelectronic performance of 2D heterostructures.