亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of Longjing Teas with Different Geographic Origins Based on E-Nose and Computer Vision System Combined with Data Fusion Strategies

支持向量机 融合 计算机科学 电子鼻 传感器融合 信息融合 机器学习 人工智能 数据挖掘 模式识别(心理学) 语言学 哲学
作者
Min Xu,Jun Wang,Pengfei Jia,Yuting Dai
出处
期刊:Transactions of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:64 (1): 327-340 被引量:2
标识
DOI:10.13031/trans.13947
摘要

Highlights E-nose and computer vision combined with data fusion strategies were applied to trace tea origins. Pearson correlation analysis, IG, and F-scores were applied to modify the fusion strategies. The classification performances of different fusion strategies were compared. The strategies of IG_SVM_FL and IG_SVM_DS achieved the best results. Abstract . The traceability of tea origins is of great significance. In this study, an electronic nose (E-nose) and computer vision system (CVS) were jointly applied to acquire aroma and image signals of tea samples, aiming at identifying Longjing teas from different geographic origins including Jinyun (120° 7' E, 28° 65' N), Xihu (120° 13' E, 30° 27' N), Xinchang (120° 9' E, 29° 50' N), and Qian Daohu (119° 3' E, 29° 60' N). Data fusion was used to integrate the E-nose and CVS signals for comprehensively characterizing the tea samples. Four traditional fusion strategies including k-nearest neighbors (KNN) and support vector machine (SVM) based feature-level fusion (KNN_FL and SVM_FL) and Dempster-Shafer (D-S) evidence theory based decision-level strategies (KNN_DS and SVM_DS) were applied for classification modeling. Pearson analysis, information gain (IG), and F-scores were employed to modify the traditional fusion strategies to reduce inconsistent and redundant information in the fusion process. The results indicated that the original fusion strategies had no superiority over independent E-nose and CVS decision-making. With the feature selection methods, the modified fusion strategies generally exhibited better performance than the independent decision-making and original fusion strategies. Moreover, the IG-based fusion strategies, encompassing IG_SVM_FL and IG_SVM_DS, achieved the highest classification accuracy of 100%. Keywords: Computer vision, Electronic nose, Feature selection, Fusion strategies, Tea origins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MchemG应助科研通管家采纳,获得10
9秒前
闫雪完成签到,获得积分10
12秒前
14秒前
闫雪发布了新的文献求助10
19秒前
Plum22发布了新的文献求助20
30秒前
直觉应助闫雪采纳,获得10
30秒前
蚂蚁踢大象完成签到 ,获得积分10
1分钟前
hgsgeospan完成签到,获得积分10
1分钟前
直率的笑翠完成签到 ,获得积分10
1分钟前
hgs完成签到,获得积分10
1分钟前
1分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
JamesPei应助科研通管家采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
Kevin完成签到,获得积分10
2分钟前
2分钟前
辉哥发布了新的文献求助10
2分钟前
3分钟前
3分钟前
董可以发布了新的文献求助10
3分钟前
英俊的铭应助董可以采纳,获得10
3分钟前
curtain完成签到,获得积分10
3分钟前
大个应助科研通管家采纳,获得10
4分钟前
MchemG应助科研通管家采纳,获得10
4分钟前
所所应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
落寞书易完成签到 ,获得积分10
4分钟前
4分钟前
现实的小霸王完成签到,获得积分10
4分钟前
4分钟前
Xw完成签到,获得积分10
4分钟前
科研通AI5应助迷人问兰采纳,获得10
5分钟前
Hello应助LSH970829采纳,获得10
5分钟前
Xw发布了新的文献求助10
5分钟前
寒冷的应助核桃采纳,获得30
5分钟前
wen发布了新的文献求助10
5分钟前
隐形曼青应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
MchemG应助科研通管家采纳,获得10
6分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990084
求助须知:如何正确求助?哪些是违规求助? 3532108
关于积分的说明 11256447
捐赠科研通 3271016
什么是DOI,文献DOI怎么找? 1805171
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228