支持向量机
融合
计算机科学
电子鼻
传感器融合
信息融合
机器学习
人工智能
数据挖掘
模式识别(心理学)
语言学
哲学
作者
Min Xu,Jun Wang,Pengfei Jia,Yuting Dai
出处
期刊:Transactions of the ASABE
[American Society of Agricultural and Biological Engineers]
日期:2021-01-01
卷期号:64 (1): 327-340
被引量:2
摘要
Highlights E-nose and computer vision combined with data fusion strategies were applied to trace tea origins. Pearson correlation analysis, IG, and F-scores were applied to modify the fusion strategies. The classification performances of different fusion strategies were compared. The strategies of IG_SVM_FL and IG_SVM_DS achieved the best results. Abstract . The traceability of tea origins is of great significance. In this study, an electronic nose (E-nose) and computer vision system (CVS) were jointly applied to acquire aroma and image signals of tea samples, aiming at identifying Longjing teas from different geographic origins including Jinyun (120° 7' E, 28° 65' N), Xihu (120° 13' E, 30° 27' N), Xinchang (120° 9' E, 29° 50' N), and Qian Daohu (119° 3' E, 29° 60' N). Data fusion was used to integrate the E-nose and CVS signals for comprehensively characterizing the tea samples. Four traditional fusion strategies including k-nearest neighbors (KNN) and support vector machine (SVM) based feature-level fusion (KNN_FL and SVM_FL) and Dempster-Shafer (D-S) evidence theory based decision-level strategies (KNN_DS and SVM_DS) were applied for classification modeling. Pearson analysis, information gain (IG), and F-scores were employed to modify the traditional fusion strategies to reduce inconsistent and redundant information in the fusion process. The results indicated that the original fusion strategies had no superiority over independent E-nose and CVS decision-making. With the feature selection methods, the modified fusion strategies generally exhibited better performance than the independent decision-making and original fusion strategies. Moreover, the IG-based fusion strategies, encompassing IG_SVM_FL and IG_SVM_DS, achieved the highest classification accuracy of 100%. Keywords: Computer vision, Electronic nose, Feature selection, Fusion strategies, Tea origins.
科研通智能强力驱动
Strongly Powered by AbleSci AI