Identification of Longjing Teas with Different Geographic Origins Based on E-Nose and Computer Vision System Combined with Data Fusion Strategies

支持向量机 融合 计算机科学 电子鼻 传感器融合 信息融合 机器学习 人工智能 数据挖掘 模式识别(心理学) 语言学 哲学
作者
Min Xu,Jun Wang,Pengfei Jia,Yuting Dai
出处
期刊:Transactions of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:64 (1): 327-340 被引量:5
标识
DOI:10.13031/trans.13947
摘要

Highlights E-nose and computer vision combined with data fusion strategies were applied to trace tea origins. Pearson correlation analysis, IG, and F-scores were applied to modify the fusion strategies. The classification performances of different fusion strategies were compared. The strategies of IG_SVM_FL and IG_SVM_DS achieved the best results. Abstract . The traceability of tea origins is of great significance. In this study, an electronic nose (E-nose) and computer vision system (CVS) were jointly applied to acquire aroma and image signals of tea samples, aiming at identifying Longjing teas from different geographic origins including Jinyun (120° 7' E, 28° 65' N), Xihu (120° 13' E, 30° 27' N), Xinchang (120° 9' E, 29° 50' N), and Qian Daohu (119° 3' E, 29° 60' N). Data fusion was used to integrate the E-nose and CVS signals for comprehensively characterizing the tea samples. Four traditional fusion strategies including k-nearest neighbors (KNN) and support vector machine (SVM) based feature-level fusion (KNN_FL and SVM_FL) and Dempster-Shafer (D-S) evidence theory based decision-level strategies (KNN_DS and SVM_DS) were applied for classification modeling. Pearson analysis, information gain (IG), and F-scores were employed to modify the traditional fusion strategies to reduce inconsistent and redundant information in the fusion process. The results indicated that the original fusion strategies had no superiority over independent E-nose and CVS decision-making. With the feature selection methods, the modified fusion strategies generally exhibited better performance than the independent decision-making and original fusion strategies. Moreover, the IG-based fusion strategies, encompassing IG_SVM_FL and IG_SVM_DS, achieved the highest classification accuracy of 100%. Keywords: Computer vision, Electronic nose, Feature selection, Fusion strategies, Tea origins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瓶子发布了新的文献求助10
1秒前
1秒前
ding应助mark707采纳,获得10
1秒前
在水一方应助galaxy采纳,获得30
2秒前
等等完成签到,获得积分20
2秒前
简简发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
向北发布了新的文献求助10
4秒前
5秒前
飞飞猪发布了新的文献求助10
6秒前
6秒前
大模型应助康智采纳,获得10
7秒前
7秒前
上官若男应助菜菜菜菜伞采纳,获得10
7秒前
或无情发布了新的文献求助10
7秒前
zwangxia发布了新的文献求助10
7秒前
8秒前
8秒前
xuanxuan完成签到 ,获得积分10
9秒前
GQL完成签到,获得积分10
9秒前
9秒前
包容代芹发布了新的文献求助10
10秒前
10秒前
科研通AI6.1应助向北采纳,获得10
10秒前
dominic12361发布了新的文献求助10
11秒前
碧霄完成签到,获得积分10
11秒前
11秒前
11秒前
微笑以南发布了新的文献求助10
12秒前
riceyellow完成签到,获得积分10
13秒前
mark707发布了新的文献求助10
13秒前
Stroeve完成签到,获得积分10
13秒前
14秒前
小花猫发布了新的文献求助10
14秒前
16秒前
ldroc完成签到,获得积分10
16秒前
lanminghao发布了新的文献求助10
16秒前
Joie完成签到,获得积分10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743234
求助须知:如何正确求助?哪些是违规求助? 5413106
关于积分的说明 15347071
捐赠科研通 4884098
什么是DOI,文献DOI怎么找? 2625582
邀请新用户注册赠送积分活动 1574482
关于科研通互助平台的介绍 1531345