Identification of Longjing Teas with Different Geographic Origins Based on E-Nose and Computer Vision System Combined with Data Fusion Strategies

支持向量机 融合 计算机科学 电子鼻 传感器融合 信息融合 机器学习 人工智能 数据挖掘 模式识别(心理学) 语言学 哲学
作者
Min Xu,Jun Wang,Pengfei Jia,Yuting Dai
出处
期刊:Transactions of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:64 (1): 327-340 被引量:5
标识
DOI:10.13031/trans.13947
摘要

Highlights E-nose and computer vision combined with data fusion strategies were applied to trace tea origins. Pearson correlation analysis, IG, and F-scores were applied to modify the fusion strategies. The classification performances of different fusion strategies were compared. The strategies of IG_SVM_FL and IG_SVM_DS achieved the best results. Abstract . The traceability of tea origins is of great significance. In this study, an electronic nose (E-nose) and computer vision system (CVS) were jointly applied to acquire aroma and image signals of tea samples, aiming at identifying Longjing teas from different geographic origins including Jinyun (120° 7' E, 28° 65' N), Xihu (120° 13' E, 30° 27' N), Xinchang (120° 9' E, 29° 50' N), and Qian Daohu (119° 3' E, 29° 60' N). Data fusion was used to integrate the E-nose and CVS signals for comprehensively characterizing the tea samples. Four traditional fusion strategies including k-nearest neighbors (KNN) and support vector machine (SVM) based feature-level fusion (KNN_FL and SVM_FL) and Dempster-Shafer (D-S) evidence theory based decision-level strategies (KNN_DS and SVM_DS) were applied for classification modeling. Pearson analysis, information gain (IG), and F-scores were employed to modify the traditional fusion strategies to reduce inconsistent and redundant information in the fusion process. The results indicated that the original fusion strategies had no superiority over independent E-nose and CVS decision-making. With the feature selection methods, the modified fusion strategies generally exhibited better performance than the independent decision-making and original fusion strategies. Moreover, the IG-based fusion strategies, encompassing IG_SVM_FL and IG_SVM_DS, achieved the highest classification accuracy of 100%. Keywords: Computer vision, Electronic nose, Feature selection, Fusion strategies, Tea origins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱讲点小道理完成签到,获得积分10
1秒前
沉静胜完成签到,获得积分10
1秒前
冷艳莛发布了新的文献求助10
2秒前
2秒前
11发布了新的文献求助10
3秒前
123yaoyao发布了新的文献求助10
4秒前
4秒前
bing完成签到,获得积分10
5秒前
lth完成签到 ,获得积分10
5秒前
ZunyeLiu完成签到,获得积分10
5秒前
Summering666完成签到,获得积分10
6秒前
6秒前
大个应助linyu采纳,获得10
6秒前
7秒前
霜之哀伤完成签到,获得积分10
7秒前
XS_QI完成签到 ,获得积分10
8秒前
唧唧咕咕发布了新的文献求助10
8秒前
Ck发布了新的文献求助10
8秒前
8秒前
收集快乐完成签到 ,获得积分10
9秒前
leo007发布了新的文献求助10
10秒前
雪满头发布了新的文献求助10
10秒前
11秒前
牧童完成签到 ,获得积分20
11秒前
蓝天发布了新的文献求助10
11秒前
Lily完成签到,获得积分10
13秒前
我不会乱起名字的完成签到,获得积分10
15秒前
当时的发布了新的文献求助10
15秒前
沙糖桔完成签到,获得积分10
15秒前
荔枝发布了新的文献求助10
15秒前
科研通AI2S应助LZH采纳,获得10
16秒前
小橘完成签到,获得积分10
17秒前
三毛完成签到 ,获得积分10
17秒前
滴滴哩哩完成签到,获得积分10
18秒前
王燕峰发布了新的文献求助10
20秒前
Ck完成签到,获得积分10
20秒前
ts完成签到,获得积分10
21秒前
finish完成签到 ,获得积分10
22秒前
搞怪的寄文完成签到 ,获得积分10
22秒前
dd完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603665
求助须知:如何正确求助?哪些是违规求助? 4688648
关于积分的说明 14855380
捐赠科研通 4694577
什么是DOI,文献DOI怎么找? 2540936
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471814