Identification of Longjing Teas with Different Geographic Origins Based on E-Nose and Computer Vision System Combined with Data Fusion Strategies

支持向量机 融合 计算机科学 电子鼻 传感器融合 信息融合 机器学习 人工智能 数据挖掘 模式识别(心理学) 语言学 哲学
作者
Min Xu,Jun Wang,Pengfei Jia,Yuting Dai
出处
期刊:Transactions of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:64 (1): 327-340 被引量:2
标识
DOI:10.13031/trans.13947
摘要

Highlights E-nose and computer vision combined with data fusion strategies were applied to trace tea origins. Pearson correlation analysis, IG, and F-scores were applied to modify the fusion strategies. The classification performances of different fusion strategies were compared. The strategies of IG_SVM_FL and IG_SVM_DS achieved the best results. Abstract . The traceability of tea origins is of great significance. In this study, an electronic nose (E-nose) and computer vision system (CVS) were jointly applied to acquire aroma and image signals of tea samples, aiming at identifying Longjing teas from different geographic origins including Jinyun (120° 7' E, 28° 65' N), Xihu (120° 13' E, 30° 27' N), Xinchang (120° 9' E, 29° 50' N), and Qian Daohu (119° 3' E, 29° 60' N). Data fusion was used to integrate the E-nose and CVS signals for comprehensively characterizing the tea samples. Four traditional fusion strategies including k-nearest neighbors (KNN) and support vector machine (SVM) based feature-level fusion (KNN_FL and SVM_FL) and Dempster-Shafer (D-S) evidence theory based decision-level strategies (KNN_DS and SVM_DS) were applied for classification modeling. Pearson analysis, information gain (IG), and F-scores were employed to modify the traditional fusion strategies to reduce inconsistent and redundant information in the fusion process. The results indicated that the original fusion strategies had no superiority over independent E-nose and CVS decision-making. With the feature selection methods, the modified fusion strategies generally exhibited better performance than the independent decision-making and original fusion strategies. Moreover, the IG-based fusion strategies, encompassing IG_SVM_FL and IG_SVM_DS, achieved the highest classification accuracy of 100%. Keywords: Computer vision, Electronic nose, Feature selection, Fusion strategies, Tea origins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健康的宛菡完成签到 ,获得积分10
刚刚
橙果果发布了新的文献求助20
刚刚
晚晚完成签到,获得积分10
1秒前
1秒前
听闻韬声依旧完成签到 ,获得积分10
1秒前
ZHZ完成签到,获得积分10
2秒前
啊哈啊哈额完成签到,获得积分10
2秒前
yyy完成签到,获得积分10
3秒前
3秒前
xiaoputaor完成签到 ,获得积分10
4秒前
Camus发布了新的文献求助10
4秒前
paper reader完成签到,获得积分10
4秒前
5秒前
八八九九九1完成签到,获得积分10
6秒前
tigger完成签到 ,获得积分10
7秒前
9秒前
11秒前
优雅的千雁完成签到,获得积分10
13秒前
2316690509完成签到 ,获得积分10
13秒前
没用的三轮完成签到,获得积分10
13秒前
fancy完成签到 ,获得积分10
13秒前
mayberichard完成签到,获得积分10
17秒前
LINDENG2004完成签到 ,获得积分10
23秒前
wz完成签到,获得积分10
24秒前
简奥斯汀完成签到 ,获得积分10
31秒前
五本笔记完成签到 ,获得积分10
31秒前
34秒前
花花发布了新的文献求助20
34秒前
asd113发布了新的文献求助10
38秒前
美满的小蘑菇完成签到 ,获得积分10
38秒前
自然白安完成签到 ,获得积分10
44秒前
量子星尘发布了新的文献求助10
47秒前
等待小鸽子完成签到 ,获得积分10
49秒前
龙虾发票完成签到,获得积分10
56秒前
小康学弟完成签到 ,获得积分10
56秒前
了0完成签到 ,获得积分10
56秒前
慕青应助科研通管家采纳,获得10
59秒前
彭于晏应助科研通管家采纳,获得30
59秒前
毛豆爸爸应助科研通管家采纳,获得20
59秒前
林利芳完成签到 ,获得积分0
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022