Identification of Longjing Teas with Different Geographic Origins Based on E-Nose and Computer Vision System Combined with Data Fusion Strategies

支持向量机 融合 计算机科学 电子鼻 传感器融合 信息融合 机器学习 人工智能 数据挖掘 模式识别(心理学) 语言学 哲学
作者
Min Xu,Jun Wang,Pengfei Jia,Yuting Dai
出处
期刊:Transactions of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:64 (1): 327-340 被引量:2
标识
DOI:10.13031/trans.13947
摘要

Highlights E-nose and computer vision combined with data fusion strategies were applied to trace tea origins. Pearson correlation analysis, IG, and F-scores were applied to modify the fusion strategies. The classification performances of different fusion strategies were compared. The strategies of IG_SVM_FL and IG_SVM_DS achieved the best results. Abstract . The traceability of tea origins is of great significance. In this study, an electronic nose (E-nose) and computer vision system (CVS) were jointly applied to acquire aroma and image signals of tea samples, aiming at identifying Longjing teas from different geographic origins including Jinyun (120° 7' E, 28° 65' N), Xihu (120° 13' E, 30° 27' N), Xinchang (120° 9' E, 29° 50' N), and Qian Daohu (119° 3' E, 29° 60' N). Data fusion was used to integrate the E-nose and CVS signals for comprehensively characterizing the tea samples. Four traditional fusion strategies including k-nearest neighbors (KNN) and support vector machine (SVM) based feature-level fusion (KNN_FL and SVM_FL) and Dempster-Shafer (D-S) evidence theory based decision-level strategies (KNN_DS and SVM_DS) were applied for classification modeling. Pearson analysis, information gain (IG), and F-scores were employed to modify the traditional fusion strategies to reduce inconsistent and redundant information in the fusion process. The results indicated that the original fusion strategies had no superiority over independent E-nose and CVS decision-making. With the feature selection methods, the modified fusion strategies generally exhibited better performance than the independent decision-making and original fusion strategies. Moreover, the IG-based fusion strategies, encompassing IG_SVM_FL and IG_SVM_DS, achieved the highest classification accuracy of 100%. Keywords: Computer vision, Electronic nose, Feature selection, Fusion strategies, Tea origins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
RESLR驳回了孙燕应助
2秒前
ysy发布了新的文献求助10
3秒前
小二郎应助momo采纳,获得10
3秒前
zzrs完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
陈红安发布了新的文献求助30
4秒前
4秒前
yyy完成签到,获得积分10
6秒前
小小aa16完成签到,获得积分10
6秒前
小呆荣发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
9秒前
幽默平安发布了新的文献求助10
9秒前
奋斗夏烟发布了新的文献求助10
11秒前
13秒前
ylh完成签到,获得积分10
15秒前
Owen应助幽默平安采纳,获得10
15秒前
乖猫要努力应助YJ888采纳,获得10
16秒前
16秒前
丘比特应助穆羊青采纳,获得10
17秒前
sasa完成签到,获得积分10
17秒前
sadascaqwqw发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
小宇子发布了新的文献求助10
20秒前
20秒前
锤子发布了新的文献求助25
21秒前
奋斗夏烟完成签到,获得积分10
21秒前
21秒前
zzrs发布了新的文献求助10
21秒前
Mo发布了新的文献求助10
23秒前
老大蒂亚戈应助YJ888采纳,获得10
23秒前
欣慰的水瑶完成签到,获得积分10
24秒前
momo发布了新的文献求助10
24秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173