Prognostic Machine Learning Models for First-Year Mortality in Incident Hemodialysis Patients: Development and Validation Study

血液透析 医学 透析 死亡率 曲线下面积 内科学 机器学习 计算机科学
作者
Kaixiang Sheng,Ping Zhang,Xi Yao,Jiawei Li,Yongchun He,Jianghua Chen
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:8 (10): e20578-e20578 被引量:10
标识
DOI:10.2196/20578
摘要

The first-year survival rate among patients undergoing hemodialysis remains poor. Current mortality risk scores for patients undergoing hemodialysis employ regression techniques and have limited applicability and robustness.We aimed to develop a machine learning model utilizing clinical factors to predict first-year mortality in patients undergoing hemodialysis that could assist physicians in classifying high-risk patients.Training and testing cohorts consisted of 5351 patients from a single center and 5828 patients from 97 renal centers undergoing hemodialysis (incident only). The outcome was all-cause mortality during the first year of dialysis. Extreme gradient boosting was used for algorithm training and validation. Two models were established based on the data obtained at dialysis initiation (model 1) and data 0-3 months after dialysis initiation (model 2), and 10-fold cross-validation was applied to each model. The area under the curve (AUC), sensitivity (recall), specificity, precision, balanced accuracy, and F1 score were used to assess the predictive ability of the models.In the training and testing cohorts, 585 (10.93%) and 764 (13.11%) patients, respectively, died during the first-year follow-up. Of 42 candidate features, the 15 most important features were selected. The performance of model 1 (AUC 0.83, 95% CI 0.78-0.84) was similar to that of model 2 (AUC 0.85, 95% CI 0.81-0.86).We developed and validated 2 machine learning models to predict first-year mortality in patients undergoing hemodialysis. Both models could be used to stratify high-risk patients at the early stages of dialysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十二完成签到,获得积分10
刚刚
雪白的稀完成签到,获得积分10
刚刚
nicholasgxz发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
在水一方应助I Think采纳,获得10
3秒前
追寻南珍发布了新的文献求助30
4秒前
郝好月发布了新的文献求助10
5秒前
卡农发布了新的文献求助10
6秒前
梦之哆啦发布了新的文献求助10
6秒前
梁三柏应助13654135090采纳,获得10
7秒前
8秒前
研友_8YoVDn完成签到,获得积分10
8秒前
MC.SU完成签到,获得积分10
9秒前
NexusExplorer应助Min采纳,获得10
10秒前
bwq发布了新的文献求助10
11秒前
12秒前
仁爱听露完成签到 ,获得积分10
16秒前
乐乐应助滑腻腻的小鱼采纳,获得10
17秒前
科研通AI2S应助lin采纳,获得10
17秒前
formulaonef1完成签到,获得积分10
17秒前
大胆的擎苍完成签到,获得积分10
18秒前
chj发布了新的文献求助10
18秒前
18秒前
19秒前
wanwu完成签到,获得积分10
20秒前
扎心应助WCM采纳,获得10
23秒前
I Think发布了新的文献求助10
24秒前
怡然行天完成签到,获得积分10
24秒前
木辰发布了新的文献求助10
25秒前
搜集达人应助科研通管家采纳,获得10
27秒前
爆米花应助科研通管家采纳,获得10
27秒前
CipherSage应助科研通管家采纳,获得10
27秒前
28秒前
28秒前
香蕉觅云应助科研通管家采纳,获得10
28秒前
隐形曼青应助科研通管家采纳,获得10
28秒前
思源应助科研通管家采纳,获得10
28秒前
28秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082549
求助须知:如何正确求助?哪些是违规求助? 2735847
关于积分的说明 7539036
捐赠科研通 2385432
什么是DOI,文献DOI怎么找? 1264844
科研通“疑难数据库(出版商)”最低求助积分说明 612830
版权声明 597685