Graph Convolutional Networks for Hyperspectral Image Classification

计算机科学 高光谱成像 瓶颈 卷积神经网络 人工智能 邻接矩阵 模式识别(心理学) 图形 串联(数学) 数据挖掘 数学 理论计算机科学 组合数学 嵌入式系统
作者
Danfeng Hong,Lianru Gao,Jing Yao,Bing Zhang,Antonio Plaza,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (7): 5966-5978 被引量:241
标识
DOI:10.1109/tgrs.2020.3015157
摘要

To read the final version please go to IEEE TGRS on IEEE Xplore. Convolutional neural networks (CNNs) have been attracting increasing attention in hyperspectral (HS) image classification, owing to their ability to capture spatial-spectral feature representations. Nevertheless, their ability in modeling relations between samples remains limited. Beyond the limitations of grid sampling, graph convolutional networks (GCNs) have been recently proposed and successfully applied in irregular (or non-grid) data representation and analysis. In this paper, we thoroughly investigate CNNs and GCNs (qualitatively and quantitatively) in terms of HS image classification. Due to the construction of the adjacency matrix on all the data, traditional GCNs usually suffer from a huge computational cost, particularly in large-scale remote sensing (RS) problems. To this end, we develop a new mini-batch GCN (called miniGCN hereinafter) which allows to train large-scale GCNs in a mini-batch fashion. More significantly, our miniGCN is capable of inferring out-of-sample data without re-training networks and improving classification performance. Furthermore, as CNNs and GCNs can extract different types of HS features, an intuitive solution to break the performance bottleneck of a single model is to fuse them. Since miniGCNs can perform batch-wise network training (enabling the combination of CNNs and GCNs) we explore three fusion strategies: additive fusion, element-wise multiplicative fusion, and concatenation fusion to measure the obtained performance gain. Extensive experiments, conducted on three HS datasets, demonstrate the advantages of miniGCNs over GCNs and the superiority of the tested fusion strategies with regards to the single CNN or GCN models. The codes of this work will be available at https://github.com/danfenghong/IEEE_TGRS_GCN for the sake of reproducibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
Chezy完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
Lyy发布了新的文献求助10
1秒前
mylove应助勤奋的易槐采纳,获得10
2秒前
SUNYAOSUNYAO发布了新的文献求助10
2秒前
小马甲应助京墨襦采纳,获得10
2秒前
3秒前
脑洞疼应助黄石采纳,获得10
3秒前
3秒前
噼里啪啦完成签到,获得积分10
3秒前
wsn发布了新的文献求助10
4秒前
所所应助xiaolu采纳,获得10
4秒前
4秒前
蟹不肉发布了新的文献求助10
5秒前
含蓄高山发布了新的文献求助10
5秒前
陈文学发布了新的文献求助10
5秒前
Chezy发布了新的文献求助10
5秒前
秦宇麒发布了新的文献求助10
6秒前
6秒前
我爱学习发布了新的文献求助10
6秒前
周ZHOU发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
知学术发布了新的文献求助30
7秒前
吴小根发布了新的文献求助10
7秒前
斯尼奇发布了新的文献求助10
7秒前
7秒前
LiuChuannan完成签到 ,获得积分10
7秒前
8秒前
微微完成签到,获得积分10
8秒前
高兴的酒窝完成签到 ,获得积分10
9秒前
9秒前
所所应助有且仅有采纳,获得10
9秒前
英姑应助千葉采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661525
求助须知:如何正确求助?哪些是违规求助? 4838950
关于积分的说明 15096313
捐赠科研通 4820245
什么是DOI,文献DOI怎么找? 2579795
邀请新用户注册赠送积分活动 1534060
关于科研通互助平台的介绍 1492773