Graph Convolutional Networks for Hyperspectral Image Classification

计算机科学 高光谱成像 瓶颈 卷积神经网络 人工智能 邻接矩阵 模式识别(心理学) 图形 串联(数学) 数据挖掘 数学 理论计算机科学 组合数学 嵌入式系统
作者
Danfeng Hong,Lianru Gao,Jing Yao,Bing Zhang,Antonio Plaza,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (7): 5966-5978 被引量:241
标识
DOI:10.1109/tgrs.2020.3015157
摘要

To read the final version please go to IEEE TGRS on IEEE Xplore. Convolutional neural networks (CNNs) have been attracting increasing attention in hyperspectral (HS) image classification, owing to their ability to capture spatial-spectral feature representations. Nevertheless, their ability in modeling relations between samples remains limited. Beyond the limitations of grid sampling, graph convolutional networks (GCNs) have been recently proposed and successfully applied in irregular (or non-grid) data representation and analysis. In this paper, we thoroughly investigate CNNs and GCNs (qualitatively and quantitatively) in terms of HS image classification. Due to the construction of the adjacency matrix on all the data, traditional GCNs usually suffer from a huge computational cost, particularly in large-scale remote sensing (RS) problems. To this end, we develop a new mini-batch GCN (called miniGCN hereinafter) which allows to train large-scale GCNs in a mini-batch fashion. More significantly, our miniGCN is capable of inferring out-of-sample data without re-training networks and improving classification performance. Furthermore, as CNNs and GCNs can extract different types of HS features, an intuitive solution to break the performance bottleneck of a single model is to fuse them. Since miniGCNs can perform batch-wise network training (enabling the combination of CNNs and GCNs) we explore three fusion strategies: additive fusion, element-wise multiplicative fusion, and concatenation fusion to measure the obtained performance gain. Extensive experiments, conducted on three HS datasets, demonstrate the advantages of miniGCNs over GCNs and the superiority of the tested fusion strategies with regards to the single CNN or GCN models. The codes of this work will be available at https://github.com/danfenghong/IEEE_TGRS_GCN for the sake of reproducibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yxdjzwx完成签到,获得积分10
刚刚
1秒前
1秒前
RizardSKs发布了新的文献求助10
1秒前
涣醒发布了新的文献求助10
1秒前
2秒前
2秒前
情怀应助勤奋幻天采纳,获得10
2秒前
难过以晴完成签到,获得积分10
2秒前
思源应助uian采纳,获得10
3秒前
3秒前
18062677029完成签到 ,获得积分10
4秒前
黯然发布了新的文献求助10
4秒前
XYL发布了新的文献求助10
4秒前
5秒前
浮生发布了新的文献求助10
6秒前
研友_n0kYwL发布了新的文献求助10
6秒前
Xiaoxiao举报从前求助涉嫌违规
6秒前
云过半山完成签到,获得积分10
7秒前
慕青应助耍酷千山采纳,获得10
8秒前
科研通AI5应助123采纳,获得10
9秒前
9秒前
111完成签到,获得积分10
9秒前
baikaishui发布了新的文献求助10
9秒前
10秒前
嗯嗯发布了新的文献求助10
10秒前
JasonTrue发布了新的文献求助30
11秒前
涣醒完成签到,获得积分10
11秒前
11秒前
我是老大应助研友_n0kYwL采纳,获得10
11秒前
老马哥发布了新的文献求助10
11秒前
乐乐应助aa采纳,获得10
12秒前
12秒前
瑞_应助瘦瘦的访文采纳,获得10
12秒前
青花发布了新的文献求助10
13秒前
P_Chem完成签到,获得积分10
13秒前
科研通AI5应助欧阳采纳,获得10
13秒前
13秒前
科研通AI5应助weiwei采纳,获得10
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3768892
求助须知:如何正确求助?哪些是违规求助? 3313845
关于积分的说明 10169393
捐赠科研通 3028741
什么是DOI,文献DOI怎么找? 1662112
邀请新用户注册赠送积分活动 794667
科研通“疑难数据库(出版商)”最低求助积分说明 756343