材料科学
复合材料
复合数
电磁屏蔽
电磁干扰
电磁干扰
热导率
碳纤维
计算机科学
电信
作者
Anushi Sharma,Rajeev Kumar,Veerendra Kumar Patle,Ridham Dhawan,Amit Abhash,Neeraj Dwivedi,D.P. Mondal,Avanish Kumar Srivastava
标识
DOI:10.1016/j.coco.2020.100433
摘要
With the rapid development of wireless communication and electronic devices, there is an urgent need for efficient electromagnetic interference (EMI) shielding and thermal conducting materials to prevent the electronic devices from electromagnetic (EM) radiation and overheating. Herein, we proposed a novel approach to fabricate carbon-MCMB composite foam that provided excellent EMI shielding and thermal conductivity. The carbon-MCMB composite foams were developed from phenol-formaldehyde (PF) resin as a carbon source and mesocarbon microbeads (MCMBs) as a conducting filler using polyurethane (PU) foam replica method. The effect of MCMBs on the microstructure, mechanical, electrical, thermal and EMI shielding properties was investigated. The carbon foam (without MCMBs inclusion) possesses the EMI shielding effectiveness (SE) of -27.5 dB at 8.2 GHz which is remarkably improved to -62.4 dB at the same frequency when 20 wt % of MCMBs added to the carbon-MCMB composite foams. Additionally, carbon-MCMB composite foams with 20 wt % of MCMBs demonstrate high thermal conductivity of 2.4 Wm-1K-1 and compressive strength of 8.2 MPa which are found to be better than the foam without MCMBs. Furthermore, lightweight carbon-MCMB composite foam offers a promising multifunctional application in defense, aerospace and lightweight portable electronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI