托普西斯
灰色关联分析
田口方法
机械加工
材料科学
理想溶液
层次分析法
合金
镁合金
复合材料
机械工程
表面粗糙度
冶金
数学
工程类
统计
物理
热力学
运筹学
作者
E. Suneesh,M. Sivapragash
出处
期刊:Measurement
[Elsevier]
日期:2020-08-11
卷期号:168: 108345-108345
被引量:25
标识
DOI:10.1016/j.measurement.2020.108345
摘要
The present research attempts to maximise the overall performance of micro-milling process while machining Mg-3.0Zn-0.7Zr-1.0Cu alloy and its alumina composites. Three performance measures (surface quality, cutting forces, and tool wear) is used for the assessment. Using a Taguchi L18 orthogonal array, eighteen experiments are carried out to test the effect of three levels of spindle speed, feed per tooth, and cutting depth. Grey relational analysis (GRA) and techniques for order of preference by similarity to ideal solution (TOPSIS) are employed to optimise the parameters. In addition, the equal weight method and entropy weight method (EWM) in combination with the analytic hierarchy process (AHP) are used to assign weights to the parameters. The GRA and TOPSIS results yielded the same optimal parameter conditions for maximising the micro-milling performance while using two different weight-assigning methods. Based on the predicted closeness value results, the GRA method is the most efficient for multi-objective optimisation.
科研通智能强力驱动
Strongly Powered by AbleSci AI