Causal inference and counterfactual prediction in machine learning for actionable healthcare

反事实思维 因果推理 计算机科学 反事实条件 观察研究 人工智能 心理干预 机器学习 因果模型 风险分析(工程) 医学 数据科学 心理学 社会心理学 病理 精神科
作者
Mattia Prosperi,Yi Guo,Matthew Sperrin,James S. Koopman,Jae Min,Xing He,Shannan N. Rich,Mo Wang,Iain Buchan,Jiang Bian
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:2 (7): 369-375 被引量:288
标识
DOI:10.1038/s42256-020-0197-y
摘要

Big data, high-performance computing, and (deep) machine learning are increasingly becoming key to precision medicine—from identifying disease risks and taking preventive measures, to making diagnoses and personalizing treatment for individuals. Precision medicine, however, is not only about predicting risks and outcomes, but also about weighing interventions. Interventional clinical predictive models require the correct specification of cause and effect, and the calculation of so-called counterfactuals, that is, alternative scenarios. In biomedical research, observational studies are commonly affected by confounding and selection bias. Without robust assumptions, often requiring a priori domain knowledge, causal inference is not feasible. Data-driven prediction models are often mistakenly used to draw causal effects, but neither their parameters nor their predictions necessarily have a causal interpretation. Therefore, the premise that data-driven prediction models lead to trustable decisions/interventions for precision medicine is questionable. When pursuing intervention modelling, the bio-health informatics community needs to employ causal approaches and learn causal structures. Here we discuss how target trials (algorithmic emulation of randomized studies), transportability (the licence to transfer causal effects from one population to another) and prediction invariance (where a true causal model is contained in the set of all prediction models whose accuracy does not vary across different settings) are linchpins to developing and testing intervention models. Machine learning models are commonly used to predict risks and outcomes in biomedical research. But healthcare often requires information about cause–effect relations and alternative scenarios, that is, counterfactuals. Prosperi et al. discuss the importance of interventional and counterfactual models, as opposed to purely predictive models, in the context of precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
浮云完成签到 ,获得积分10
2秒前
屈岂愈完成签到,获得积分10
3秒前
17秒前
Pupil完成签到,获得积分10
17秒前
偏偏意气用事完成签到,获得积分10
18秒前
安安完成签到,获得积分10
22秒前
cttc完成签到,获得积分10
23秒前
Chnimike完成签到 ,获得积分10
23秒前
27秒前
红茸茸羊完成签到 ,获得积分10
27秒前
年轻千愁完成签到 ,获得积分10
29秒前
liu完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助10
30秒前
Wanyeweiyu完成签到,获得积分10
32秒前
Fury完成签到 ,获得积分10
37秒前
风中幻梦完成签到,获得积分10
39秒前
bigpluto完成签到,获得积分10
40秒前
42秒前
是谁还没睡完成签到 ,获得积分10
43秒前
盘尼西林发布了新的文献求助10
47秒前
zzz完成签到 ,获得积分10
49秒前
dktrrrr完成签到,获得积分10
51秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
丘比特应助科研通管家采纳,获得20
51秒前
51秒前
ccc完成签到,获得积分10
56秒前
萧秋灵完成签到,获得积分10
57秒前
缓慢冥幽完成签到,获得积分10
57秒前
旺仔同学完成签到,获得积分10
1分钟前
吉以寒完成签到,获得积分10
1分钟前
科研老兵完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
fys131415完成签到 ,获得积分10
1分钟前
执着的忆雪完成签到 ,获得积分10
1分钟前
1分钟前
闵不悔完成签到,获得积分10
1分钟前
阳光火车完成签到 ,获得积分10
1分钟前
cc完成签到,获得积分10
1分钟前
合适的寄灵完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022