Causal inference and counterfactual prediction in machine learning for actionable healthcare

反事实思维 因果推理 计算机科学 反事实条件 观察研究 人工智能 心理干预 机器学习 因果模型 风险分析(工程) 医学 数据科学 心理学 社会心理学 病理 精神科
作者
Mattia Prosperi,Yi Guo,Matthew Sperrin,James S. Koopman,Jae Min,Xing He,Shannan N. Rich,Mo Wang,Iain Buchan,Jiang Bian
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:2 (7): 369-375 被引量:223
标识
DOI:10.1038/s42256-020-0197-y
摘要

Big data, high-performance computing, and (deep) machine learning are increasingly becoming key to precision medicine—from identifying disease risks and taking preventive measures, to making diagnoses and personalizing treatment for individuals. Precision medicine, however, is not only about predicting risks and outcomes, but also about weighing interventions. Interventional clinical predictive models require the correct specification of cause and effect, and the calculation of so-called counterfactuals, that is, alternative scenarios. In biomedical research, observational studies are commonly affected by confounding and selection bias. Without robust assumptions, often requiring a priori domain knowledge, causal inference is not feasible. Data-driven prediction models are often mistakenly used to draw causal effects, but neither their parameters nor their predictions necessarily have a causal interpretation. Therefore, the premise that data-driven prediction models lead to trustable decisions/interventions for precision medicine is questionable. When pursuing intervention modelling, the bio-health informatics community needs to employ causal approaches and learn causal structures. Here we discuss how target trials (algorithmic emulation of randomized studies), transportability (the licence to transfer causal effects from one population to another) and prediction invariance (where a true causal model is contained in the set of all prediction models whose accuracy does not vary across different settings) are linchpins to developing and testing intervention models. Machine learning models are commonly used to predict risks and outcomes in biomedical research. But healthcare often requires information about cause–effect relations and alternative scenarios, that is, counterfactuals. Prosperi et al. discuss the importance of interventional and counterfactual models, as opposed to purely predictive models, in the context of precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大小米发布了新的文献求助30
1秒前
xl关注了科研通微信公众号
3秒前
大模型应助adoretheall采纳,获得10
3秒前
Leo完成签到 ,获得积分10
7秒前
Mineme完成签到,获得积分10
8秒前
8秒前
9秒前
11秒前
JamesPei应助Mineme采纳,获得10
12秒前
SciGPT应助小王的祝同学采纳,获得10
14秒前
wsbkeyanTong发布了新的文献求助10
14秒前
大小米完成签到,获得积分10
15秒前
小小sci发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
呆萌刺猬完成签到 ,获得积分10
18秒前
xl发布了新的文献求助10
20秒前
21秒前
wsbkeyanTong完成签到,获得积分10
21秒前
田焕焕发布了新的文献求助10
22秒前
Renee应助liq采纳,获得10
22秒前
22秒前
yzj关注了科研通微信公众号
30秒前
桐桐应助lxy采纳,获得10
31秒前
斩封完成签到,获得积分10
33秒前
隐形曼青应助ZZ采纳,获得10
33秒前
斯文败类应助斩封采纳,获得10
36秒前
酷酷的友灵完成签到,获得积分10
36秒前
打打应助lilili采纳,获得10
39秒前
42秒前
42秒前
烟花应助科研通管家采纳,获得10
43秒前
汉堡包应助科研通管家采纳,获得10
43秒前
李爱国应助科研通管家采纳,获得10
43秒前
大模型应助科研通管家采纳,获得10
43秒前
小蘑菇应助科研通管家采纳,获得10
43秒前
44秒前
852应助zzzhw采纳,获得10
46秒前
懵懂的灭男完成签到,获得积分10
46秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161006
求助须知:如何正确求助?哪些是违规求助? 2812229
关于积分的说明 7895058
捐赠科研通 2471142
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631069
版权声明 602086