Causal inference and counterfactual prediction in machine learning for actionable healthcare

反事实思维 因果推理 计算机科学 反事实条件 观察研究 人工智能 心理干预 机器学习 因果模型 风险分析(工程) 医学 数据科学 心理学 社会心理学 病理 精神科
作者
Mattia Prosperi,Yi Guo,Matthew Sperrin,James S. Koopman,Jae Min,Xing He,Shannan N. Rich,Mo Wang,Iain Buchan,Jiang Bian
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:2 (7): 369-375 被引量:371
标识
DOI:10.1038/s42256-020-0197-y
摘要

Big data, high-performance computing, and (deep) machine learning are increasingly becoming key to precision medicine—from identifying disease risks and taking preventive measures, to making diagnoses and personalizing treatment for individuals. Precision medicine, however, is not only about predicting risks and outcomes, but also about weighing interventions. Interventional clinical predictive models require the correct specification of cause and effect, and the calculation of so-called counterfactuals, that is, alternative scenarios. In biomedical research, observational studies are commonly affected by confounding and selection bias. Without robust assumptions, often requiring a priori domain knowledge, causal inference is not feasible. Data-driven prediction models are often mistakenly used to draw causal effects, but neither their parameters nor their predictions necessarily have a causal interpretation. Therefore, the premise that data-driven prediction models lead to trustable decisions/interventions for precision medicine is questionable. When pursuing intervention modelling, the bio-health informatics community needs to employ causal approaches and learn causal structures. Here we discuss how target trials (algorithmic emulation of randomized studies), transportability (the licence to transfer causal effects from one population to another) and prediction invariance (where a true causal model is contained in the set of all prediction models whose accuracy does not vary across different settings) are linchpins to developing and testing intervention models. Machine learning models are commonly used to predict risks and outcomes in biomedical research. But healthcare often requires information about cause–effect relations and alternative scenarios, that is, counterfactuals. Prosperi et al. discuss the importance of interventional and counterfactual models, as opposed to purely predictive models, in the context of precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tianling完成签到,获得积分0
刚刚
巴拉巴拉完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
希望天下0贩的0应助qikuu采纳,获得10
1秒前
1秒前
SIC1完成签到,获得积分10
2秒前
标致秋尽发布了新的文献求助10
3秒前
ala完成签到,获得积分10
3秒前
3秒前
鱼书完成签到,获得积分10
4秒前
ZR完成签到,获得积分10
5秒前
高高电灯胆完成签到,获得积分10
5秒前
畅快的念烟完成签到,获得积分0
5秒前
明明发布了新的文献求助10
5秒前
6秒前
6秒前
ilotus完成签到,获得积分10
7秒前
zero完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
健康的雁凡完成签到,获得积分10
8秒前
水月完成签到,获得积分10
8秒前
DrW完成签到,获得积分10
9秒前
起点完成签到,获得积分10
9秒前
nyfz2002完成签到,获得积分20
9秒前
10秒前
学茶小白完成签到,获得积分10
11秒前
456发布了新的文献求助10
11秒前
高高的无颜完成签到,获得积分10
11秒前
Gracie1108关注了科研通微信公众号
12秒前
13秒前
桃子发布了新的文献求助10
13秒前
张渔歌完成签到,获得积分10
14秒前
情怀应助成成成岩浆采纳,获得10
14秒前
赖雅绿完成签到,获得积分0
14秒前
15秒前
江小白完成签到,获得积分0
15秒前
zyq完成签到,获得积分10
15秒前
知性的幼晴应助ZR采纳,获得10
15秒前
落寞乘云完成签到,获得积分10
16秒前
wxliao1234发布了新的文献求助30
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773550
求助须知:如何正确求助?哪些是违规求助? 5612386
关于积分的说明 15431598
捐赠科研通 4906002
什么是DOI,文献DOI怎么找? 2640012
邀请新用户注册赠送积分活动 1587860
关于科研通互助平台的介绍 1542922