Causal inference and counterfactual prediction in machine learning for actionable healthcare

反事实思维 因果推理 计算机科学 反事实条件 观察研究 人工智能 心理干预 机器学习 因果模型 风险分析(工程) 医学 数据科学 心理学 社会心理学 病理 精神科
作者
Mattia Prosperi,Yi Guo,Matthew Sperrin,James S. Koopman,Jae Min,Xing He,Shannan N. Rich,Mo Wang,Iain Buchan,Jiang Bian
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:2 (7): 369-375 被引量:352
标识
DOI:10.1038/s42256-020-0197-y
摘要

Big data, high-performance computing, and (deep) machine learning are increasingly becoming key to precision medicine—from identifying disease risks and taking preventive measures, to making diagnoses and personalizing treatment for individuals. Precision medicine, however, is not only about predicting risks and outcomes, but also about weighing interventions. Interventional clinical predictive models require the correct specification of cause and effect, and the calculation of so-called counterfactuals, that is, alternative scenarios. In biomedical research, observational studies are commonly affected by confounding and selection bias. Without robust assumptions, often requiring a priori domain knowledge, causal inference is not feasible. Data-driven prediction models are often mistakenly used to draw causal effects, but neither their parameters nor their predictions necessarily have a causal interpretation. Therefore, the premise that data-driven prediction models lead to trustable decisions/interventions for precision medicine is questionable. When pursuing intervention modelling, the bio-health informatics community needs to employ causal approaches and learn causal structures. Here we discuss how target trials (algorithmic emulation of randomized studies), transportability (the licence to transfer causal effects from one population to another) and prediction invariance (where a true causal model is contained in the set of all prediction models whose accuracy does not vary across different settings) are linchpins to developing and testing intervention models. Machine learning models are commonly used to predict risks and outcomes in biomedical research. But healthcare often requires information about cause–effect relations and alternative scenarios, that is, counterfactuals. Prosperi et al. discuss the importance of interventional and counterfactual models, as opposed to purely predictive models, in the context of precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
会飞的鱼完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
科研通AI2S应助神勇的映真采纳,获得10
1秒前
scsc完成签到,获得积分10
1秒前
ghhu完成签到,获得积分10
2秒前
优美的莹芝完成签到,获得积分10
2秒前
RBT完成签到,获得积分10
2秒前
3秒前
wmumu完成签到 ,获得积分20
4秒前
彩色的三德完成签到,获得积分10
4秒前
宋依依发布了新的文献求助10
4秒前
噜噜噜噜噜完成签到,获得积分10
5秒前
lrid完成签到 ,获得积分10
5秒前
饱满语风发布了新的文献求助30
5秒前
vespa完成签到,获得积分20
6秒前
sunyanghu369发布了新的文献求助10
6秒前
魏猛完成签到,获得积分10
6秒前
sarah完成签到,获得积分10
7秒前
7秒前
RBT发布了新的文献求助10
7秒前
爆米花应助yixiaolou采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
cayn发布了新的文献求助10
8秒前
WSGQT完成签到,获得积分10
8秒前
9秒前
9秒前
新疆大枣完成签到,获得积分10
10秒前
Bressanone完成签到,获得积分10
10秒前
萨伊普完成签到,获得积分10
10秒前
11秒前
11秒前
YTY完成签到,获得积分10
11秒前
DDD完成签到,获得积分10
12秒前
王大锤完成签到,获得积分10
14秒前
杜青完成签到,获得积分10
14秒前
芝芝完成签到,获得积分10
15秒前
NexusExplorer应助北还北采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418830
求助须知:如何正确求助?哪些是违规求助? 4534433
关于积分的说明 14144216
捐赠科研通 4450723
什么是DOI,文献DOI怎么找? 2441331
邀请新用户注册赠送积分活动 1433062
关于科研通互助平台的介绍 1410502