Causal inference and counterfactual prediction in machine learning for actionable healthcare

反事实思维 因果推理 计算机科学 反事实条件 观察研究 人工智能 心理干预 机器学习 因果模型 风险分析(工程) 医学 数据科学 心理学 社会心理学 病理 精神科
作者
Mattia Prosperi,Yi Guo,Matthew Sperrin,James S. Koopman,Jae Min,Xing He,Shannan N. Rich,Mo Wang,Iain Buchan,Jiang Bian
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:2 (7): 369-375 被引量:371
标识
DOI:10.1038/s42256-020-0197-y
摘要

Big data, high-performance computing, and (deep) machine learning are increasingly becoming key to precision medicine—from identifying disease risks and taking preventive measures, to making diagnoses and personalizing treatment for individuals. Precision medicine, however, is not only about predicting risks and outcomes, but also about weighing interventions. Interventional clinical predictive models require the correct specification of cause and effect, and the calculation of so-called counterfactuals, that is, alternative scenarios. In biomedical research, observational studies are commonly affected by confounding and selection bias. Without robust assumptions, often requiring a priori domain knowledge, causal inference is not feasible. Data-driven prediction models are often mistakenly used to draw causal effects, but neither their parameters nor their predictions necessarily have a causal interpretation. Therefore, the premise that data-driven prediction models lead to trustable decisions/interventions for precision medicine is questionable. When pursuing intervention modelling, the bio-health informatics community needs to employ causal approaches and learn causal structures. Here we discuss how target trials (algorithmic emulation of randomized studies), transportability (the licence to transfer causal effects from one population to another) and prediction invariance (where a true causal model is contained in the set of all prediction models whose accuracy does not vary across different settings) are linchpins to developing and testing intervention models. Machine learning models are commonly used to predict risks and outcomes in biomedical research. But healthcare often requires information about cause–effect relations and alternative scenarios, that is, counterfactuals. Prosperi et al. discuss the importance of interventional and counterfactual models, as opposed to purely predictive models, in the context of precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
max完成签到 ,获得积分10
刚刚
1秒前
真ikun发布了新的文献求助30
2秒前
KBYer完成签到,获得积分10
3秒前
个性的平蓝完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
小蚂蚁森完成签到,获得积分10
5秒前
ccy发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
Lucas完成签到,获得积分10
6秒前
光之霓裳完成签到 ,获得积分10
6秒前
7秒前
吉吉国王完成签到 ,获得积分10
11秒前
PengqianGuo完成签到,获得积分10
12秒前
12秒前
FashionBoy应助ccy采纳,获得10
13秒前
善学以致用应助优秀采纳,获得10
13秒前
15秒前
16秒前
如意二娘完成签到 ,获得积分10
17秒前
17秒前
18秒前
18秒前
nipanpan完成签到,获得积分10
19秒前
woodenfish发布了新的文献求助10
19秒前
三途完成签到 ,获得积分10
19秒前
科研通AI6.1应助¥#¥-11采纳,获得10
20秒前
20秒前
20秒前
源正生物发布了新的文献求助10
21秒前
小兔子发布了新的文献求助10
22秒前
serenity发布了新的文献求助10
22秒前
孙明浩发布了新的文献求助10
24秒前
25秒前
26秒前
12完成签到 ,获得积分10
27秒前
28秒前
Hearing胡发布了新的文献求助10
30秒前
完美世界应助科研通管家采纳,获得10
30秒前
科目三应助科研通管家采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741705
求助须知:如何正确求助?哪些是违规求助? 5403758
关于积分的说明 15343201
捐赠科研通 4883272
什么是DOI,文献DOI怎么找? 2624986
邀请新用户注册赠送积分活动 1573801
关于科研通互助平台的介绍 1530722