Causal inference and counterfactual prediction in machine learning for actionable healthcare

反事实思维 因果推理 计算机科学 反事实条件 观察研究 人工智能 心理干预 机器学习 因果模型 风险分析(工程) 医学 数据科学 心理学 社会心理学 病理 精神科
作者
Mattia Prosperi,Yi Guo,Matthew Sperrin,James S. Koopman,Jae Min,Xing He,Shannan N. Rich,Mo Wang,Iain Buchan,Jiang Bian
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:2 (7): 369-375 被引量:363
标识
DOI:10.1038/s42256-020-0197-y
摘要

Big data, high-performance computing, and (deep) machine learning are increasingly becoming key to precision medicine—from identifying disease risks and taking preventive measures, to making diagnoses and personalizing treatment for individuals. Precision medicine, however, is not only about predicting risks and outcomes, but also about weighing interventions. Interventional clinical predictive models require the correct specification of cause and effect, and the calculation of so-called counterfactuals, that is, alternative scenarios. In biomedical research, observational studies are commonly affected by confounding and selection bias. Without robust assumptions, often requiring a priori domain knowledge, causal inference is not feasible. Data-driven prediction models are often mistakenly used to draw causal effects, but neither their parameters nor their predictions necessarily have a causal interpretation. Therefore, the premise that data-driven prediction models lead to trustable decisions/interventions for precision medicine is questionable. When pursuing intervention modelling, the bio-health informatics community needs to employ causal approaches and learn causal structures. Here we discuss how target trials (algorithmic emulation of randomized studies), transportability (the licence to transfer causal effects from one population to another) and prediction invariance (where a true causal model is contained in the set of all prediction models whose accuracy does not vary across different settings) are linchpins to developing and testing intervention models. Machine learning models are commonly used to predict risks and outcomes in biomedical research. But healthcare often requires information about cause–effect relations and alternative scenarios, that is, counterfactuals. Prosperi et al. discuss the importance of interventional and counterfactual models, as opposed to purely predictive models, in the context of precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MADKAI发布了新的文献求助10
刚刚
輕語完成签到,获得积分10
1秒前
keyan应助Canoe采纳,获得10
1秒前
嘉佳伽应助wuxunxun2015采纳,获得10
1秒前
1秒前
2秒前
lavender发布了新的文献求助10
2秒前
HYH发布了新的文献求助30
2秒前
今后应助VVzza采纳,获得10
3秒前
思源应助可靠幼旋采纳,获得10
3秒前
彬彬发布了新的文献求助10
3秒前
3秒前
王金娥完成签到,获得积分10
4秒前
微微发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
Darlene完成签到,获得积分20
5秒前
CodeCraft应助纯真芙采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
童话完成签到,获得积分10
6秒前
22完成签到,获得积分10
6秒前
6秒前
zsyhcl完成签到,获得积分10
6秒前
jason完成签到 ,获得积分10
6秒前
怪怪完成签到 ,获得积分10
6秒前
7秒前
许初发布了新的文献求助10
7秒前
Nuyoah完成签到,获得积分10
7秒前
yj发布了新的文献求助10
7秒前
科研狗发布了新的文献求助10
8秒前
vc完成签到,获得积分20
8秒前
hyx7735发布了新的文献求助10
8秒前
Jasper应助lv采纳,获得10
10秒前
Jasper应助十次方采纳,获得10
10秒前
vc发布了新的文献求助10
10秒前
10秒前
AneyWinter66应助miqilin采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612993
求助须知:如何正确求助?哪些是违规求助? 4698217
关于积分的说明 14896593
捐赠科研通 4734695
什么是DOI,文献DOI怎么找? 2546766
邀请新用户注册赠送积分活动 1510830
关于科研通互助平台的介绍 1473494