Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks

激活函数 初始化 梯度下降 最大值和最小值 人工神经网络 计算机科学 随机梯度下降算法 趋同(经济学) 收敛速度 基质(化学分析) 计算 数学优化 控制理论(社会学) 应用数学 数学 算法 人工智能 数学分析 材料科学 钥匙(锁) 复合材料 经济 计算机安全 程序设计语言 控制(管理) 经济增长
作者
Ameya D. Jagtap,Kenji Kawaguchi,George Em Karniadakis
出处
期刊:Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences [Royal Society]
卷期号:476 (2239): 20200334-20200334 被引量:276
标识
DOI:10.1098/rspa.2020.0334
摘要

We propose two approaches of locally adaptive activation functions namely, layer-wise and neuron-wise locally adaptive activation functions, which improve the performance of deep and physics-informed neural networks. The local adaptation of activation function is achieved by introducing a scalable parameter in each layer (layer-wise) and for every neuron (neuron-wise) separately, and then optimizing it using a variant of stochastic gradient descent algorithm. In order to further increase the training speed, an activation slope-based slope recovery term is added in the loss function, which further accelerates convergence, thereby reducing the training cost. On the theoretical side, we prove that in the proposed method, the gradient descent algorithms are not attracted to sub-optimal critical points or local minima under practical conditions on the initialization and learning rate, and that the gradient dynamics of the proposed method is not achievable by base methods with any (adaptive) learning rates. We further show that the adaptive activation methods accelerate the convergence by implicitly multiplying conditioning matrices to the gradient of the base method without any explicit computation of the conditioning matrix and the matrix–vector product. The different adaptive activation functions are shown to induce different implicit conditioning matrices. Furthermore, the proposed methods with the slope recovery are shown to accelerate the training process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦的秋柔完成签到,获得积分10
刚刚
包容诗槐完成签到,获得积分10
1秒前
情怀应助WTTTTTFFFFFF采纳,获得10
1秒前
2秒前
3秒前
Lazarus完成签到,获得积分10
3秒前
Lizhe发布了新的文献求助10
4秒前
夏沫完成签到,获得积分10
4秒前
4秒前
2041完成签到,获得积分10
5秒前
beikou完成签到,获得积分10
5秒前
5秒前
byby完成签到,获得积分10
5秒前
大头完成签到,获得积分10
6秒前
Yipou完成签到,获得积分10
6秒前
6秒前
Jiang发布了新的文献求助10
6秒前
7秒前
7秒前
学术扛把子完成签到 ,获得积分10
7秒前
MY完成签到,获得积分10
8秒前
Shuang完成签到,获得积分10
8秒前
Ricardo完成签到,获得积分10
9秒前
wenfeng完成签到 ,获得积分20
9秒前
隔壁小曾发布了新的文献求助10
9秒前
xy完成签到 ,获得积分10
9秒前
mawenxing完成签到,获得积分10
10秒前
汉堡包应助wen采纳,获得10
10秒前
舒克大王完成签到,获得积分10
10秒前
tt825发布了新的文献求助10
10秒前
合适怡完成签到,获得积分10
10秒前
22333发布了新的文献求助10
11秒前
繁华落幕完成签到,获得积分10
11秒前
11秒前
快乐小海带完成签到,获得积分10
11秒前
11秒前
CT民工完成签到,获得积分10
12秒前
完美世界应助beikou采纳,获得10
12秒前
12秒前
zino完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016278
求助须知:如何正确求助?哪些是违规求助? 3556388
关于积分的说明 11320934
捐赠科研通 3289218
什么是DOI,文献DOI怎么找? 1812421
邀请新用户注册赠送积分活动 887940
科研通“疑难数据库(出版商)”最低求助积分说明 812060