光电子学
异质结
材料科学
响应度
极化(电化学)
各向异性
光学
光电探测器
物理
化学
物理化学
作者
Ziwei Li,Boyi Xu,Delang Liang,Anlian Pan
出处
期刊:Research
[AAAS00]
日期:2020-01-01
卷期号:2020
被引量:44
标识
DOI:10.34133/2020/5464258
摘要
The development of optoelectronic devices requires breakthroughs in new material systems and novel device mechanisms, and the demand recently changes from the detection of signal intensity and responsivity to the exploration of sensitivity of polarized state information. Two-dimensional (2D) materials are a rich family exhibiting diverse physical and electronic properties for polarization device applications, including anisotropic materials, valleytronic materials, and other hybrid heterostructures. In this review, we first review the polarized-light-dependent physical mechanism in 2D materials, then present detailed descriptions in optical and optoelectronic properties, involving Raman shift, optical absorption, and light emission and functional optoelectronic devices. Finally, a comment is made on future developments and challenges. The plethora of 2D materials and their heterostructures offers the promise of polarization-dependent scientific discovery and optoelectronic device application.
科研通智能强力驱动
Strongly Powered by AbleSci AI