Radiomics of small renal masses on multiphasic CT: accuracy of machine learning–based classification models for the differentiation of renal cell carcinoma and angiomyolipoma without visible fat

无线电技术 放射科 介入放射学 医学 肾细胞癌 神经组阅片室 超声波 血管平滑肌脂肪瘤 病理 内科学 神经学 精神科
作者
Ruimeng Yang,Jialiang Wu,Lei Sun,Shengsheng Lai,Yikai Xu,Xilong Liu,Ying Ma,Xin Zhen
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:30 (2): 1254-1263 被引量:80
标识
DOI:10.1007/s00330-019-06384-5
摘要

To investigate the discriminative capabilities of different machine learning–based classification models on the differentiation of small (< 4 cm) renal angiomyolipoma without visible fat (AMLwvf) and renal cell carcinoma (RCC). This study retrospectively collected 163 patients with pathologically proven small renal mass, including 118 RCC and 45 AMLwvf patients. Target region of interest (ROI) delineation, followed by texture feature extraction, was performed on a representative slice with the largest lesion area on each phase of the four-phase CT images. Fifteen concatenations of the four-phasic features were fed into 224 classification models (built with 8 classifiers and 28 feature selection methods), classification performances of the 3360 resultant discriminative models were compared, and the top-ranked features were analyzed. Image features extracted from the unenhanced phase (UP) CT image demonstrated dominant classification performances over features from other three phases. The two discriminative models “SVM + t_score” and “SVM + relief” achieved the highest classification AUC of 0.90. The 10 top-ranked features from UP included 1 shape feature, 5 first-order statistics features, and 4 texture features, where the shape feature and the first-order statistics features showed superior discriminative capabilities in differentiating RCC vs. AMLwvf through the t-SNE visualization. Image features extracted from UP are sufficient to generate accurate differentiation between AMLwvf and RCC using machine learning–based classification model. • Radiomics extracted from unenhanced CT are sufficient to accurately differentiate angiomyolipoma without visible fat and renal cell carcinoma using machine learning–based classification model. • The highest discriminative models achieved an AUC of 0.90 and were based on the analysis of unenhanced CT, alone or in association with images obtained at the nephrographic phase. • Features related to shape and to histogram analysis (first-order statistics) showed superior discrimination compared with gray-level distribution of the image (second-order statistics, commonly called texture features).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南笙完成签到,获得积分10
刚刚
刚刚
小强123完成签到,获得积分10
刚刚
LUNE完成签到 ,获得积分10
1秒前
Ari_Kun发布了新的文献求助10
2秒前
花花屯屯完成签到 ,获得积分10
2秒前
凶狠的水桃完成签到,获得积分10
2秒前
陈_Ccc完成签到 ,获得积分10
2秒前
宫访彤发布了新的文献求助10
4秒前
Yuan完成签到 ,获得积分10
4秒前
缓慢手机完成签到,获得积分10
5秒前
浮游应助222采纳,获得10
7秒前
chenu完成签到 ,获得积分10
7秒前
7秒前
栢君苏mini完成签到,获得积分10
7秒前
8秒前
8秒前
qinandi124完成签到,获得积分10
9秒前
11秒前
小白菜发布了新的文献求助10
11秒前
淡定碧玉完成签到 ,获得积分10
11秒前
12秒前
13秒前
14秒前
yjy发布了新的文献求助10
15秒前
Rita应助中心万方采纳,获得10
15秒前
兴奋蘑菇发布了新的文献求助30
16秒前
不可以虫鸣吗我是大聪明完成签到 ,获得积分10
16秒前
单纯邑完成签到 ,获得积分10
16秒前
yellow完成签到,获得积分10
16秒前
Ryuan完成签到 ,获得积分10
17秒前
调皮惜天完成签到,获得积分10
17秒前
海之恋心完成签到 ,获得积分10
17秒前
Doctor120发布了新的文献求助10
19秒前
yyx完成签到,获得积分20
19秒前
19秒前
俭朴的易烟完成签到,获得积分10
20秒前
Ari_Kun完成签到,获得积分10
20秒前
爱听歌的夏烟完成签到,获得积分10
21秒前
lrn发布了新的文献求助10
21秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5224014
求助须知:如何正确求助?哪些是违规求助? 4396144
关于积分的说明 13683097
捐赠科研通 4260375
什么是DOI,文献DOI怎么找? 2337899
邀请新用户注册赠送积分活动 1335269
关于科研通互助平台的介绍 1291008