Radiomics of small renal masses on multiphasic CT: accuracy of machine learning–based classification models for the differentiation of renal cell carcinoma and angiomyolipoma without visible fat

无线电技术 放射科 介入放射学 医学 肾细胞癌 神经组阅片室 超声波 血管平滑肌脂肪瘤 病理 内科学 神经学 精神科
作者
Ruimeng Yang,Jialiang Wu,Lei Sun,Shengsheng Lai,Yikai Xu,Xilong Liu,Ying Ma,Xin Zhen
出处
期刊:European Radiology [Springer Nature]
卷期号:30 (2): 1254-1263 被引量:76
标识
DOI:10.1007/s00330-019-06384-5
摘要

To investigate the discriminative capabilities of different machine learning–based classification models on the differentiation of small (< 4 cm) renal angiomyolipoma without visible fat (AMLwvf) and renal cell carcinoma (RCC). This study retrospectively collected 163 patients with pathologically proven small renal mass, including 118 RCC and 45 AMLwvf patients. Target region of interest (ROI) delineation, followed by texture feature extraction, was performed on a representative slice with the largest lesion area on each phase of the four-phase CT images. Fifteen concatenations of the four-phasic features were fed into 224 classification models (built with 8 classifiers and 28 feature selection methods), classification performances of the 3360 resultant discriminative models were compared, and the top-ranked features were analyzed. Image features extracted from the unenhanced phase (UP) CT image demonstrated dominant classification performances over features from other three phases. The two discriminative models “SVM + t_score” and “SVM + relief” achieved the highest classification AUC of 0.90. The 10 top-ranked features from UP included 1 shape feature, 5 first-order statistics features, and 4 texture features, where the shape feature and the first-order statistics features showed superior discriminative capabilities in differentiating RCC vs. AMLwvf through the t-SNE visualization. Image features extracted from UP are sufficient to generate accurate differentiation between AMLwvf and RCC using machine learning–based classification model. • Radiomics extracted from unenhanced CT are sufficient to accurately differentiate angiomyolipoma without visible fat and renal cell carcinoma using machine learning–based classification model. • The highest discriminative models achieved an AUC of 0.90 and were based on the analysis of unenhanced CT, alone or in association with images obtained at the nephrographic phase. • Features related to shape and to histogram analysis (first-order statistics) showed superior discrimination compared with gray-level distribution of the image (second-order statistics, commonly called texture features).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
bkagyin应助kiki采纳,获得10
1秒前
尹冰露发布了新的文献求助10
2秒前
天天快乐应助hhh采纳,获得10
3秒前
3秒前
sl完成签到,获得积分10
3秒前
传奇3应助recardo采纳,获得10
4秒前
miaomiao0225发布了新的文献求助20
4秒前
4秒前
耍酷海白发布了新的文献求助10
4秒前
pluto应助十四采纳,获得10
5秒前
5秒前
hhhblabla完成签到,获得积分10
5秒前
5秒前
姜姜发布了新的文献求助10
6秒前
6秒前
苏小狸完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
8秒前
徐哗啦完成签到,获得积分10
8秒前
怡然画板发布了新的文献求助10
8秒前
黄饱饱发布了新的文献求助10
8秒前
bopbopbaby发布了新的文献求助10
8秒前
大胆香彤发布了新的文献求助10
8秒前
科研渣渣完成签到,获得积分10
9秒前
han发布了新的文献求助10
9秒前
晴天驳回了Owen应助
9秒前
10秒前
所所应助捱小秋采纳,获得10
10秒前
10秒前
10秒前
11秒前
田様应助tingting采纳,获得10
11秒前
宇是眼中星眸完成签到 ,获得积分10
11秒前
11秒前
隐形曼青应助lfg采纳,获得10
12秒前
天台飞船发布了新的文献求助10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3295273
求助须知:如何正确求助?哪些是违规求助? 2931212
关于积分的说明 8451305
捐赠科研通 2603798
什么是DOI,文献DOI怎么找? 1421447
科研通“疑难数据库(出版商)”最低求助积分说明 660854
邀请新用户注册赠送积分活动 643847