Radiomics of small renal masses on multiphasic CT: accuracy of machine learning–based classification models for the differentiation of renal cell carcinoma and angiomyolipoma without visible fat

无线电技术 放射科 介入放射学 医学 肾细胞癌 神经组阅片室 超声波 血管平滑肌脂肪瘤 病理 内科学 神经学 精神科
作者
Ruimeng Yang,Jialiang Wu,Lei Sun,Shengsheng Lai,Yikai Xu,Xilong Liu,Ying Ma,Xin Zhen
出处
期刊:European Radiology [Springer Nature]
卷期号:30 (2): 1254-1263 被引量:80
标识
DOI:10.1007/s00330-019-06384-5
摘要

To investigate the discriminative capabilities of different machine learning–based classification models on the differentiation of small (< 4 cm) renal angiomyolipoma without visible fat (AMLwvf) and renal cell carcinoma (RCC). This study retrospectively collected 163 patients with pathologically proven small renal mass, including 118 RCC and 45 AMLwvf patients. Target region of interest (ROI) delineation, followed by texture feature extraction, was performed on a representative slice with the largest lesion area on each phase of the four-phase CT images. Fifteen concatenations of the four-phasic features were fed into 224 classification models (built with 8 classifiers and 28 feature selection methods), classification performances of the 3360 resultant discriminative models were compared, and the top-ranked features were analyzed. Image features extracted from the unenhanced phase (UP) CT image demonstrated dominant classification performances over features from other three phases. The two discriminative models “SVM + t_score” and “SVM + relief” achieved the highest classification AUC of 0.90. The 10 top-ranked features from UP included 1 shape feature, 5 first-order statistics features, and 4 texture features, where the shape feature and the first-order statistics features showed superior discriminative capabilities in differentiating RCC vs. AMLwvf through the t-SNE visualization. Image features extracted from UP are sufficient to generate accurate differentiation between AMLwvf and RCC using machine learning–based classification model. • Radiomics extracted from unenhanced CT are sufficient to accurately differentiate angiomyolipoma without visible fat and renal cell carcinoma using machine learning–based classification model. • The highest discriminative models achieved an AUC of 0.90 and were based on the analysis of unenhanced CT, alone or in association with images obtained at the nephrographic phase. • Features related to shape and to histogram analysis (first-order statistics) showed superior discrimination compared with gray-level distribution of the image (second-order statistics, commonly called texture features).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助刘浩然采纳,获得10
刚刚
小事完成签到 ,获得积分10
2秒前
小五完成签到 ,获得积分10
4秒前
机智灵薇完成签到,获得积分10
6秒前
6秒前
小青椒应助guozizi采纳,获得30
7秒前
summer完成签到 ,获得积分10
8秒前
czzlancer完成签到,获得积分10
9秒前
景妙海完成签到 ,获得积分10
10秒前
111完成签到,获得积分10
11秒前
烨霖完成签到,获得积分10
11秒前
12秒前
青黛完成签到 ,获得积分10
12秒前
学不懂数学完成签到,获得积分10
13秒前
田様应助无奈的如彤采纳,获得10
13秒前
Owen应助无奈的如彤采纳,获得10
13秒前
雪儿完成签到 ,获得积分10
13秒前
UniTTEC9560完成签到,获得积分10
15秒前
happyAlice完成签到,获得积分10
15秒前
靓丽访枫完成签到 ,获得积分10
16秒前
刘浩然发布了新的文献求助10
17秒前
可爱的函函应助jias采纳,获得10
17秒前
大个应助烨霖采纳,获得10
18秒前
niu完成签到,获得积分10
21秒前
单纯乞完成签到,获得积分10
21秒前
波风水门_文献来晚了吗完成签到,获得积分10
21秒前
TTTHANKS完成签到 ,获得积分10
21秒前
哎呀哎呀呀完成签到,获得积分10
22秒前
鹿阿布完成签到,获得积分10
22秒前
柒柒球完成签到,获得积分10
25秒前
26秒前
lucia5354完成签到,获得积分10
28秒前
滴答完成签到 ,获得积分10
28秒前
29秒前
jias发布了新的文献求助10
29秒前
29秒前
Cynthia完成签到,获得积分10
29秒前
易止完成签到 ,获得积分10
30秒前
天天开心完成签到 ,获得积分10
31秒前
33秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378585
求助须知:如何正确求助?哪些是违规求助? 4502996
关于积分的说明 14014893
捐赠科研通 4411620
什么是DOI,文献DOI怎么找? 2423429
邀请新用户注册赠送积分活动 1416338
关于科研通互助平台的介绍 1393765