Radiomics of small renal masses on multiphasic CT: accuracy of machine learning–based classification models for the differentiation of renal cell carcinoma and angiomyolipoma without visible fat

无线电技术 放射科 介入放射学 医学 肾细胞癌 神经组阅片室 超声波 血管平滑肌脂肪瘤 病理 内科学 神经学 精神科
作者
Ruimeng Yang,Jialiang Wu,Lei Sun,Shengsheng Lai,Yikai Xu,Xilong Liu,Ying Ma,Xin Zhen
出处
期刊:European Radiology [Springer Nature]
卷期号:30 (2): 1254-1263 被引量:80
标识
DOI:10.1007/s00330-019-06384-5
摘要

To investigate the discriminative capabilities of different machine learning–based classification models on the differentiation of small (< 4 cm) renal angiomyolipoma without visible fat (AMLwvf) and renal cell carcinoma (RCC). This study retrospectively collected 163 patients with pathologically proven small renal mass, including 118 RCC and 45 AMLwvf patients. Target region of interest (ROI) delineation, followed by texture feature extraction, was performed on a representative slice with the largest lesion area on each phase of the four-phase CT images. Fifteen concatenations of the four-phasic features were fed into 224 classification models (built with 8 classifiers and 28 feature selection methods), classification performances of the 3360 resultant discriminative models were compared, and the top-ranked features were analyzed. Image features extracted from the unenhanced phase (UP) CT image demonstrated dominant classification performances over features from other three phases. The two discriminative models “SVM + t_score” and “SVM + relief” achieved the highest classification AUC of 0.90. The 10 top-ranked features from UP included 1 shape feature, 5 first-order statistics features, and 4 texture features, where the shape feature and the first-order statistics features showed superior discriminative capabilities in differentiating RCC vs. AMLwvf through the t-SNE visualization. Image features extracted from UP are sufficient to generate accurate differentiation between AMLwvf and RCC using machine learning–based classification model. • Radiomics extracted from unenhanced CT are sufficient to accurately differentiate angiomyolipoma without visible fat and renal cell carcinoma using machine learning–based classification model. • The highest discriminative models achieved an AUC of 0.90 and were based on the analysis of unenhanced CT, alone or in association with images obtained at the nephrographic phase. • Features related to shape and to histogram analysis (first-order statistics) showed superior discrimination compared with gray-level distribution of the image (second-order statistics, commonly called texture features).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cilia发布了新的文献求助30
刚刚
刚刚
1秒前
冷傲的如凡完成签到,获得积分10
1秒前
小王发布了新的文献求助10
2秒前
秋秋完成签到,获得积分10
2秒前
易楠完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
小巧灵枫完成签到 ,获得积分10
3秒前
妙奇完成签到,获得积分10
3秒前
yiwangwuqian完成签到,获得积分10
3秒前
揽月发布了新的文献求助10
3秒前
3秒前
3秒前
HaHa270完成签到,获得积分10
4秒前
可爱的函函应助zzy采纳,获得10
4秒前
左安完成签到,获得积分10
5秒前
5秒前
小雨点Logan完成签到,获得积分10
5秒前
深情安青应助凌乱采纳,获得10
6秒前
活力的招牌完成签到 ,获得积分10
6秒前
6秒前
6秒前
Wu完成签到 ,获得积分10
6秒前
Cilia完成签到,获得积分10
7秒前
步步完成签到 ,获得积分10
7秒前
7秒前
7秒前
文艺的元菱完成签到,获得积分10
7秒前
风中冰香应助妙奇采纳,获得10
7秒前
自信大白菜真实的钥匙完成签到,获得积分10
8秒前
楚乐倩发布了新的文献求助10
8秒前
liya完成签到,获得积分10
9秒前
七七七完成签到,获得积分10
9秒前
9秒前
潆星完成签到,获得积分10
9秒前
秋秋发布了新的文献求助10
9秒前
moonglow完成签到,获得积分10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439708
求助须知:如何正确求助?哪些是违规求助? 4550755
关于积分的说明 14226292
捐赠科研通 4471853
什么是DOI,文献DOI怎么找? 2450516
邀请新用户注册赠送积分活动 1441452
关于科研通互助平台的介绍 1417930