Radiomics of small renal masses on multiphasic CT: accuracy of machine learning–based classification models for the differentiation of renal cell carcinoma and angiomyolipoma without visible fat

无线电技术 放射科 介入放射学 医学 肾细胞癌 神经组阅片室 超声波 血管平滑肌脂肪瘤 病理 内科学 神经学 精神科
作者
Ruimeng Yang,Jialiang Wu,Lei Sun,Shengsheng Lai,Yikai Xu,Xilong Liu,Ying Ma,Xin Zhen
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:30 (2): 1254-1263 被引量:78
标识
DOI:10.1007/s00330-019-06384-5
摘要

To investigate the discriminative capabilities of different machine learning–based classification models on the differentiation of small (< 4 cm) renal angiomyolipoma without visible fat (AMLwvf) and renal cell carcinoma (RCC). This study retrospectively collected 163 patients with pathologically proven small renal mass, including 118 RCC and 45 AMLwvf patients. Target region of interest (ROI) delineation, followed by texture feature extraction, was performed on a representative slice with the largest lesion area on each phase of the four-phase CT images. Fifteen concatenations of the four-phasic features were fed into 224 classification models (built with 8 classifiers and 28 feature selection methods), classification performances of the 3360 resultant discriminative models were compared, and the top-ranked features were analyzed. Image features extracted from the unenhanced phase (UP) CT image demonstrated dominant classification performances over features from other three phases. The two discriminative models “SVM + t_score” and “SVM + relief” achieved the highest classification AUC of 0.90. The 10 top-ranked features from UP included 1 shape feature, 5 first-order statistics features, and 4 texture features, where the shape feature and the first-order statistics features showed superior discriminative capabilities in differentiating RCC vs. AMLwvf through the t-SNE visualization. Image features extracted from UP are sufficient to generate accurate differentiation between AMLwvf and RCC using machine learning–based classification model. • Radiomics extracted from unenhanced CT are sufficient to accurately differentiate angiomyolipoma without visible fat and renal cell carcinoma using machine learning–based classification model. • The highest discriminative models achieved an AUC of 0.90 and were based on the analysis of unenhanced CT, alone or in association with images obtained at the nephrographic phase. • Features related to shape and to histogram analysis (first-order statistics) showed superior discrimination compared with gray-level distribution of the image (second-order statistics, commonly called texture features).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术大亨发布了新的文献求助10
1秒前
开心苠给开心苠的求助进行了留言
1秒前
Lailai完成签到,获得积分10
2秒前
zewangguo完成签到,获得积分10
3秒前
Onni完成签到 ,获得积分10
4秒前
Zzz完成签到,获得积分10
5秒前
沧笙踏歌应助cc采纳,获得10
6秒前
求求各位大哥救救小弟我吧完成签到,获得积分10
6秒前
wangqinlei完成签到 ,获得积分10
8秒前
9秒前
9秒前
JamesPei应助joejoe采纳,获得10
10秒前
RY完成签到,获得积分10
12秒前
传奇3应助健忘的寒荷采纳,获得10
12秒前
13秒前
13秒前
14秒前
小二郎应助yy采纳,获得10
14秒前
iNk应助adeno采纳,获得10
15秒前
科研菜鱼发布了新的文献求助10
15秒前
16秒前
shutong完成签到,获得积分10
16秒前
17秒前
19秒前
蹇蹇完成签到 ,获得积分10
19秒前
来天才完成签到,获得积分10
20秒前
脑洞疼应助33采纳,获得30
21秒前
joejoe发布了新的文献求助10
22秒前
23秒前
无花果应助科研菜鱼采纳,获得10
24秒前
完犊子发布了新的文献求助10
24秒前
香蕉觅云应助cyndi采纳,获得10
25秒前
邢夏之发布了新的文献求助20
25秒前
包包酱完成签到,获得积分10
26秒前
爱吃香菜完成签到,获得积分10
26秒前
绝望核弹完成签到 ,获得积分10
28秒前
29秒前
开心初雪完成签到,获得积分10
30秒前
科研Cat发布了新的文献求助10
32秒前
li完成签到,获得积分10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965984
求助须知:如何正确求助?哪些是违规求助? 3511325
关于积分的说明 11157405
捐赠科研通 3245882
什么是DOI,文献DOI怎么找? 1793218
邀请新用户注册赠送积分活动 874262
科研通“疑难数据库(出版商)”最低求助积分说明 804286