Radiomics of small renal masses on multiphasic CT: accuracy of machine learning–based classification models for the differentiation of renal cell carcinoma and angiomyolipoma without visible fat

无线电技术 放射科 介入放射学 医学 肾细胞癌 神经组阅片室 超声波 血管平滑肌脂肪瘤 病理 内科学 神经学 精神科
作者
Ruimeng Yang,Jialiang Wu,Lei Sun,Shengsheng Lai,Yikai Xu,Xilong Liu,Ying Ma,Xin Zhen
出处
期刊:European Radiology [Springer Nature]
卷期号:30 (2): 1254-1263 被引量:80
标识
DOI:10.1007/s00330-019-06384-5
摘要

To investigate the discriminative capabilities of different machine learning–based classification models on the differentiation of small (< 4 cm) renal angiomyolipoma without visible fat (AMLwvf) and renal cell carcinoma (RCC). This study retrospectively collected 163 patients with pathologically proven small renal mass, including 118 RCC and 45 AMLwvf patients. Target region of interest (ROI) delineation, followed by texture feature extraction, was performed on a representative slice with the largest lesion area on each phase of the four-phase CT images. Fifteen concatenations of the four-phasic features were fed into 224 classification models (built with 8 classifiers and 28 feature selection methods), classification performances of the 3360 resultant discriminative models were compared, and the top-ranked features were analyzed. Image features extracted from the unenhanced phase (UP) CT image demonstrated dominant classification performances over features from other three phases. The two discriminative models “SVM + t_score” and “SVM + relief” achieved the highest classification AUC of 0.90. The 10 top-ranked features from UP included 1 shape feature, 5 first-order statistics features, and 4 texture features, where the shape feature and the first-order statistics features showed superior discriminative capabilities in differentiating RCC vs. AMLwvf through the t-SNE visualization. Image features extracted from UP are sufficient to generate accurate differentiation between AMLwvf and RCC using machine learning–based classification model. • Radiomics extracted from unenhanced CT are sufficient to accurately differentiate angiomyolipoma without visible fat and renal cell carcinoma using machine learning–based classification model. • The highest discriminative models achieved an AUC of 0.90 and were based on the analysis of unenhanced CT, alone or in association with images obtained at the nephrographic phase. • Features related to shape and to histogram analysis (first-order statistics) showed superior discrimination compared with gray-level distribution of the image (second-order statistics, commonly called texture features).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷傲迎梦发布了新的文献求助10
刚刚
xiaofengche完成签到,获得积分10
刚刚
ksduoiwex发布了新的文献求助10
1秒前
烟花应助chengzi采纳,获得10
1秒前
大模型应助liang采纳,获得10
1秒前
2秒前
2秒前
Orange应助呆呆采纳,获得10
3秒前
CipherSage应助qah采纳,获得10
3秒前
苏东湾仔发布了新的文献求助10
3秒前
在我梦里绕完成签到,获得积分10
3秒前
5秒前
6秒前
Criminology34应助安全123采纳,获得10
6秒前
认真的向卉完成签到,获得积分10
6秒前
曹广秀完成签到,获得积分10
6秒前
科研通AI6应助Zhusy采纳,获得10
7秒前
多情的凉面关注了科研通微信公众号
7秒前
韶华若锦完成签到 ,获得积分10
8秒前
蓝天应助琉琉硫采纳,获得10
8秒前
科研通AI6应助kyf采纳,获得10
9秒前
99完成签到,获得积分10
9秒前
胡大嘴先生完成签到,获得积分10
9秒前
科研通AI6应助liujingbin采纳,获得10
9秒前
随便叫点啥完成签到,获得积分10
10秒前
Ma完成签到,获得积分10
10秒前
科研王帝同学完成签到 ,获得积分10
10秒前
陈M雯完成签到 ,获得积分10
11秒前
HMLM完成签到,获得积分10
11秒前
冰雪痕完成签到 ,获得积分10
11秒前
噜噜噜噜噜完成签到,获得积分10
12秒前
Neo完成签到,获得积分10
12秒前
初遇之时最暖完成签到,获得积分10
13秒前
13秒前
liliuuuuuuuu完成签到 ,获得积分10
13秒前
科研小白完成签到,获得积分10
13秒前
大方向秋完成签到,获得积分10
13秒前
Jasper应助好运莲莲采纳,获得10
13秒前
14秒前
chojo发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565327
求助须知:如何正确求助?哪些是违规求助? 4650317
关于积分的说明 14690672
捐赠科研通 4592233
什么是DOI,文献DOI怎么找? 2519494
邀请新用户注册赠送积分活动 1491964
关于科研通互助平台的介绍 1463183