Development and Validation of a Machine Learning Model to Explore Tyrosine Kinase Inhibitor Response in Patients With Stage IV EGFR Variant–Positive Non–Small Cell Lung Cancer

医学 肿瘤科 内科学 队列 肺癌 表皮生长因子受体 队列研究 回顾性队列研究 癌症 阶段(地层学) 生物 古生物学
作者
Jiangdian Song,Lu Wang,Nathan Ng,Mingfang Zhao,Jingyun Shi,Ning Wu,Weimin Liu,Zaiyi Liu,Kristen W. Yeom,Jie Tian
出处
期刊:JAMA network open [American Medical Association]
卷期号:3 (12): e2030442-e2030442 被引量:34
标识
DOI:10.1001/jamanetworkopen.2020.30442
摘要

Importance

An end-to-end efficacy evaluation approach for identifying progression risk after epidermal growth factor receptor (EGFR)–tyrosine kinase inhibitor (TKI) therapy in patients with stage IVEGFRvariant–positive non–small cell lung cancer (NSCLC) is lacking.

Objective

To propose a clinically applicable large-scale bidirectional generative adversarial network for predicting the efficacy of EGFR-TKI therapy in patients with NSCLC.

Design, Setting, and Participants

This diagnostic/prognostic study enrolled 465 patients from January 1, 2010, to August 1, 2017, with follow-up from February 1, 2010, to June 1, 2020. A deep learning (DL) semantic signature to predict progression-free survival (PFS) was constructed in the training cohort, validated in 2 external validation and 2 control cohorts, and compared with the radiomics signature.

Exposures

An end-to-end bidirectional generative adversarial network framework was designed to predict the progression risk in patients with NSCLC.

Main Outcomes and Measures

The primary end point was PFS, considering the time from the initiation of therapy to the date of recurrence, confirmed disease progression, or death.

Results

A total of 342 patients with stage IVEGFRvariant–positive NSCLC receiving EGFR-TKI therapy met the inclusion criteria. Of these, 145 patients from 2 of the hospitals (n = 117 and 28) formed a training cohort (mean [SD] age, 61 [11] years; 87 [60.0%] female), and the patients from 2 other hospitals comprised 2 external validation cohorts (validation cohort 1: n = 101; mean [SD] age, 57 [12] years; 60 [59.4%] female; and validation cohort 2: n = 96, mean [SD] age, 58 [9] years; 55 [57.3%] female). Fifty-six patients with advanced-stageEGFRvariant–positive NSCLC (mean [SD] age, 52 [11] years; 26 [46.4%] female) and 67 patients with advanced-stageEGFRwild-type NSCLC (mean [SD] age, 54 [10] years; 10 [15.0%] female) who received first-line chemotherapy were included. A total of 90 (26%) receiving EGFR-TKI therapy with a high risk of rapid disease progression were identified (median [range] PFS, 7.3 [1.4-32.0] months in the training cohort, 5.0 [0.6-34.6] months in validation cohort 1, and 6.4 [1.8-20.1] months, in validation cohort 2) using the DL semantic signature.The PFS decreased by 36% (hazard ratio, 2.13; 95% CI, 1.30-3.49;P < .001) compared with that in other patients (median [range] PFS, 11.5 [1.5-64.2] months in the training cohort, 10.9 [1.1-50.5] in validation cohort 1, and 8.9 [0.8-40.6] months in validation cohort 2. No significant differences were observed when comparing the PFS of high-risk patients receiving EGFR-TKI therapy with the chemotherapy cohorts (median PFS, 6.9 vs 4.4 months;P = .08). In terms of predicting the tumor progression risk after EGFR-TKI therapy, clinical decisions based on the DL semantic signature led to better survival outcomes than those based on radiomics signature across all risk probabilities by the decision curve analysis.

Conclusions and Relevance

This diagnostic/prognostic study provides a clinically applicable approach for identifying patients with stage IVEGFRvariant–positive NSCLC who are not likely to benefit from EGFR-TKI therapy. The end-to-end DL-derived semantic features eliminated all manual interventions required while using previous radiomics methods and have a better prognostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cyskdsn完成签到 ,获得积分10
3秒前
王权富贵完成签到,获得积分20
3秒前
科研通AI2S应助Kevin Li采纳,获得30
5秒前
平常从蓉完成签到,获得积分10
5秒前
小冠军完成签到,获得积分10
8秒前
安静的ky完成签到 ,获得积分10
8秒前
宸浅完成签到 ,获得积分10
18秒前
shadow完成签到 ,获得积分20
20秒前
王权富贵发布了新的文献求助10
28秒前
万能图书馆应助刘思琪采纳,获得10
30秒前
cx完成签到,获得积分10
30秒前
和平完成签到 ,获得积分10
37秒前
38秒前
千玺的小粉丝儿完成签到,获得积分10
45秒前
HS完成签到,获得积分10
46秒前
53秒前
123321321345发布了新的文献求助30
58秒前
穆一手完成签到 ,获得积分10
1分钟前
老天师一巴掌完成签到 ,获得积分10
1分钟前
zz完成签到 ,获得积分10
1分钟前
Jonsnow完成签到 ,获得积分10
1分钟前
俊逸的白梦完成签到 ,获得积分10
1分钟前
短巷完成签到 ,获得积分10
1分钟前
Till完成签到 ,获得积分10
1分钟前
dent强完成签到 ,获得积分10
1分钟前
gmc完成签到 ,获得积分10
1分钟前
拼搏的败完成签到 ,获得积分10
1分钟前
chenbin完成签到,获得积分10
1分钟前
shadow完成签到,获得积分10
1分钟前
陈米花完成签到,获得积分10
2分钟前
yyjl31完成签到,获得积分0
2分钟前
Simon_chat完成签到,获得积分10
2分钟前
icedreamer111发布了新的文献求助10
2分钟前
元元完成签到,获得积分10
2分钟前
吐司炸弹完成签到,获得积分10
2分钟前
mayfly完成签到,获得积分10
2分钟前
2分钟前
JamesPei应助icedreamer111采纳,获得10
2分钟前
单薄沐夏完成签到 ,获得积分10
2分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244791
求助须知:如何正确求助?哪些是违规求助? 2888424
关于积分的说明 8252900
捐赠科研通 2556928
什么是DOI,文献DOI怎么找? 1385502
科研通“疑难数据库(出版商)”最低求助积分说明 650176
邀请新用户注册赠送积分活动 626303