Development and Validation of a Machine Learning Model to Explore Tyrosine Kinase Inhibitor Response in Patients With Stage IV EGFR Variant–Positive Non–Small Cell Lung Cancer

医学 肿瘤科 内科学 队列 肺癌 表皮生长因子受体 队列研究 回顾性队列研究 癌症 阶段(地层学) 生物 古生物学
作者
Jiangdian Song,Lu Wang,Nathan Ng,Mingfang Zhao,Jingyun Shi,Ning Wu,Weimin Liu,Zaiyi Liu,Kristen W. Yeom,Jie Tian
出处
期刊:JAMA network open [American Medical Association]
卷期号:3 (12): e2030442-e2030442 被引量:34
标识
DOI:10.1001/jamanetworkopen.2020.30442
摘要

Importance

An end-to-end efficacy evaluation approach for identifying progression risk after epidermal growth factor receptor (EGFR)–tyrosine kinase inhibitor (TKI) therapy in patients with stage IVEGFRvariant–positive non–small cell lung cancer (NSCLC) is lacking.

Objective

To propose a clinically applicable large-scale bidirectional generative adversarial network for predicting the efficacy of EGFR-TKI therapy in patients with NSCLC.

Design, Setting, and Participants

This diagnostic/prognostic study enrolled 465 patients from January 1, 2010, to August 1, 2017, with follow-up from February 1, 2010, to June 1, 2020. A deep learning (DL) semantic signature to predict progression-free survival (PFS) was constructed in the training cohort, validated in 2 external validation and 2 control cohorts, and compared with the radiomics signature.

Exposures

An end-to-end bidirectional generative adversarial network framework was designed to predict the progression risk in patients with NSCLC.

Main Outcomes and Measures

The primary end point was PFS, considering the time from the initiation of therapy to the date of recurrence, confirmed disease progression, or death.

Results

A total of 342 patients with stage IVEGFRvariant–positive NSCLC receiving EGFR-TKI therapy met the inclusion criteria. Of these, 145 patients from 2 of the hospitals (n = 117 and 28) formed a training cohort (mean [SD] age, 61 [11] years; 87 [60.0%] female), and the patients from 2 other hospitals comprised 2 external validation cohorts (validation cohort 1: n = 101; mean [SD] age, 57 [12] years; 60 [59.4%] female; and validation cohort 2: n = 96, mean [SD] age, 58 [9] years; 55 [57.3%] female). Fifty-six patients with advanced-stageEGFRvariant–positive NSCLC (mean [SD] age, 52 [11] years; 26 [46.4%] female) and 67 patients with advanced-stageEGFRwild-type NSCLC (mean [SD] age, 54 [10] years; 10 [15.0%] female) who received first-line chemotherapy were included. A total of 90 (26%) receiving EGFR-TKI therapy with a high risk of rapid disease progression were identified (median [range] PFS, 7.3 [1.4-32.0] months in the training cohort, 5.0 [0.6-34.6] months in validation cohort 1, and 6.4 [1.8-20.1] months, in validation cohort 2) using the DL semantic signature.The PFS decreased by 36% (hazard ratio, 2.13; 95% CI, 1.30-3.49;P < .001) compared with that in other patients (median [range] PFS, 11.5 [1.5-64.2] months in the training cohort, 10.9 [1.1-50.5] in validation cohort 1, and 8.9 [0.8-40.6] months in validation cohort 2. No significant differences were observed when comparing the PFS of high-risk patients receiving EGFR-TKI therapy with the chemotherapy cohorts (median PFS, 6.9 vs 4.4 months;P = .08). In terms of predicting the tumor progression risk after EGFR-TKI therapy, clinical decisions based on the DL semantic signature led to better survival outcomes than those based on radiomics signature across all risk probabilities by the decision curve analysis.

Conclusions and Relevance

This diagnostic/prognostic study provides a clinically applicable approach for identifying patients with stage IVEGFRvariant–positive NSCLC who are not likely to benefit from EGFR-TKI therapy. The end-to-end DL-derived semantic features eliminated all manual interventions required while using previous radiomics methods and have a better prognostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TT完成签到,获得积分10
1秒前
reck发布了新的文献求助10
1秒前
2秒前
DK发布了新的文献求助10
2秒前
英俊的铭应助ren采纳,获得10
2秒前
圈圈发布了新的文献求助10
2秒前
乐乱完成签到 ,获得积分10
3秒前
415484112完成签到,获得积分10
4秒前
yinyi发布了新的文献求助10
4秒前
4秒前
赵一丁完成签到,获得积分10
5秒前
成就绮琴完成签到 ,获得积分10
5秒前
Chen完成签到,获得积分10
5秒前
huanfid完成签到 ,获得积分10
5秒前
5秒前
5秒前
6秒前
Stitch完成签到 ,获得积分10
6秒前
6秒前
眯眯眼的冷珍完成签到,获得积分10
6秒前
bjyx完成签到,获得积分10
6秒前
reck完成签到,获得积分10
7秒前
pharmstudent发布了新的文献求助30
7秒前
小田完成签到,获得积分10
7秒前
小喵发布了新的文献求助10
8秒前
FashionBoy应助毛毛哦啊采纳,获得10
8秒前
Lucas应助Chen采纳,获得10
9秒前
强健的蚂蚁完成签到,获得积分20
9秒前
小宇发布了新的文献求助10
9秒前
斜杠武完成签到,获得积分20
9秒前
10秒前
伞兵龙发布了新的文献求助10
10秒前
RC_Wang应助科研小民工采纳,获得10
10秒前
sanben完成签到,获得积分10
10秒前
10秒前
_蝴蝶小姐完成签到,获得积分10
11秒前
诗轩发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672