Development and Validation of a Machine Learning Model to Explore Tyrosine Kinase Inhibitor Response in Patients With Stage IV EGFR Variant–Positive Non–Small Cell Lung Cancer

医学 肿瘤科 内科学 队列 肺癌 表皮生长因子受体 队列研究 回顾性队列研究 癌症 阶段(地层学) 生物 古生物学
作者
Jiangdian Song,Lu Wang,Nathan Ng,Mingfang Zhao,Jingyun Shi,Ning Wu,Weimin Liu,Zaiyi Liu,Kristen W. Yeom,Jie Tian
出处
期刊:JAMA network open [American Medical Association]
卷期号:3 (12): e2030442-e2030442 被引量:34
标识
DOI:10.1001/jamanetworkopen.2020.30442
摘要

Importance

An end-to-end efficacy evaluation approach for identifying progression risk after epidermal growth factor receptor (EGFR)–tyrosine kinase inhibitor (TKI) therapy in patients with stage IVEGFRvariant–positive non–small cell lung cancer (NSCLC) is lacking.

Objective

To propose a clinically applicable large-scale bidirectional generative adversarial network for predicting the efficacy of EGFR-TKI therapy in patients with NSCLC.

Design, Setting, and Participants

This diagnostic/prognostic study enrolled 465 patients from January 1, 2010, to August 1, 2017, with follow-up from February 1, 2010, to June 1, 2020. A deep learning (DL) semantic signature to predict progression-free survival (PFS) was constructed in the training cohort, validated in 2 external validation and 2 control cohorts, and compared with the radiomics signature.

Exposures

An end-to-end bidirectional generative adversarial network framework was designed to predict the progression risk in patients with NSCLC.

Main Outcomes and Measures

The primary end point was PFS, considering the time from the initiation of therapy to the date of recurrence, confirmed disease progression, or death.

Results

A total of 342 patients with stage IVEGFRvariant–positive NSCLC receiving EGFR-TKI therapy met the inclusion criteria. Of these, 145 patients from 2 of the hospitals (n = 117 and 28) formed a training cohort (mean [SD] age, 61 [11] years; 87 [60.0%] female), and the patients from 2 other hospitals comprised 2 external validation cohorts (validation cohort 1: n = 101; mean [SD] age, 57 [12] years; 60 [59.4%] female; and validation cohort 2: n = 96, mean [SD] age, 58 [9] years; 55 [57.3%] female). Fifty-six patients with advanced-stageEGFRvariant–positive NSCLC (mean [SD] age, 52 [11] years; 26 [46.4%] female) and 67 patients with advanced-stageEGFRwild-type NSCLC (mean [SD] age, 54 [10] years; 10 [15.0%] female) who received first-line chemotherapy were included. A total of 90 (26%) receiving EGFR-TKI therapy with a high risk of rapid disease progression were identified (median [range] PFS, 7.3 [1.4-32.0] months in the training cohort, 5.0 [0.6-34.6] months in validation cohort 1, and 6.4 [1.8-20.1] months, in validation cohort 2) using the DL semantic signature.The PFS decreased by 36% (hazard ratio, 2.13; 95% CI, 1.30-3.49;P < .001) compared with that in other patients (median [range] PFS, 11.5 [1.5-64.2] months in the training cohort, 10.9 [1.1-50.5] in validation cohort 1, and 8.9 [0.8-40.6] months in validation cohort 2. No significant differences were observed when comparing the PFS of high-risk patients receiving EGFR-TKI therapy with the chemotherapy cohorts (median PFS, 6.9 vs 4.4 months;P = .08). In terms of predicting the tumor progression risk after EGFR-TKI therapy, clinical decisions based on the DL semantic signature led to better survival outcomes than those based on radiomics signature across all risk probabilities by the decision curve analysis.

Conclusions and Relevance

This diagnostic/prognostic study provides a clinically applicable approach for identifying patients with stage IVEGFRvariant–positive NSCLC who are not likely to benefit from EGFR-TKI therapy. The end-to-end DL-derived semantic features eliminated all manual interventions required while using previous radiomics methods and have a better prognostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助jagger采纳,获得10
2秒前
3秒前
orixero应助科研通管家采纳,获得10
3秒前
yar应助科研通管家采纳,获得10
3秒前
FanFan应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
yar应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
yar应助科研通管家采纳,获得10
4秒前
jyy应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
yar应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
zhouyan发布了新的文献求助10
5秒前
jzzzz完成签到,获得积分10
5秒前
5秒前
ED应助Iridescent采纳,获得10
6秒前
Wjc发布了新的文献求助10
7秒前
adds完成签到,获得积分20
7秒前
我是老大应助wzz采纳,获得10
8秒前
10秒前
zhangshu发布了新的文献求助10
10秒前
起司嗯完成签到,获得积分10
11秒前
11秒前
smiling完成签到,获得积分10
11秒前
虎虎生威完成签到,获得积分10
12秒前
rubbertail发布了新的文献求助20
12秒前
pink完成签到,获得积分10
12秒前
12秒前
sean完成签到 ,获得积分10
12秒前
孜然西瓜完成签到,获得积分10
13秒前
jiangru完成签到,获得积分20
14秒前
LinJunhong发布了新的文献求助10
15秒前
16秒前
pink发布了新的文献求助10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135622
捐赠科研通 3239835
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150