Urban flow prediction with spatial–temporal neural ODEs

计算机科学 灵活性(工程) 深度学习 人工神经网络 人工智能 卷积神经网络 流量(计算机网络) 数据挖掘 机器学习 颂歌 钥匙(锁) 艺术 统计 数学 计算机安全 文学类
作者
Fan Zhou,Liang Li,Kunpeng Zhang,Goce Trajcevski
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:124: 102912-102912 被引量:34
标识
DOI:10.1016/j.trc.2020.102912
摘要

With the recent advances in deep learning, data-driven methods have shown compelling performance in various application domains enabling the Smart Cities paradigm. Leveraging spatial–temporal data from multiple sources for (citywide) traffic forecasting is a key to strengthen the smart city management in areas such as urban traffic control, abnormal event detection, etc. Existing approaches of traffic flow prediction mainly rely on the development of various deep neural networks –e.g., Convolutional Neural Networks such as ResNet are used for modeling spatial dependencies among different regions, whereas recurrent neural networks are increasingly implemented for temporal dynamics modeling. Despite their advantages, the existing approaches suffer from limitations of intensive computations, lack of capabilities to properly deal with missing values, and simplistic integration of heterogeneous data. In this paper, we propose a novel urban flow prediction framework by generalizing the hidden states of the model with continuous-time dynamics of the latent states using neural ordinary differential equations (ODE). Specifically, we introduce a discretize-then-optimize approach to improve and balance the prediction accuracy and computational efficiency. It not only guarantees the prediction error but also provides high flexibility for decision-makers. Furthermore, we investigate the factors, both intrinsic and extrinsic, that affect the city traffic volume and use separate neural networks to extract and disentangle the influencing factors, which avoids the brute-force data fusion in previous works. Extensive experiments conducted on the real-world large-scale datasets demonstrate that our method outperforms the state-of-the-art baselines, while requiring significantly less memory cost and fewer model parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英吉利25发布了新的文献求助80
刚刚
年轻的孤晴完成签到 ,获得积分10
刚刚
123456完成签到,获得积分10
1秒前
Urusaiina发布了新的文献求助10
1秒前
小破仁发布了新的文献求助10
1秒前
自觉的薯片完成签到,获得积分10
2秒前
gmjinfeng完成签到,获得积分0
3秒前
3秒前
晨晨完成签到,获得积分10
3秒前
3秒前
木木发布了新的文献求助10
4秒前
abc完成签到,获得积分10
4秒前
大模型应助manjusaka采纳,获得10
4秒前
慕青应助manjusaka采纳,获得10
4秒前
FOX完成签到 ,获得积分10
4秒前
上官若男应助manjusaka采纳,获得10
4秒前
4秒前
hoijuon发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
achulw发布了新的文献求助10
7秒前
大个应助Lmey采纳,获得10
7秒前
8秒前
8秒前
Yinp完成签到,获得积分20
8秒前
wwwzzzccss完成签到,获得积分10
8秒前
SunXinwei发布了新的文献求助10
8秒前
天天快乐应助苗玉采纳,获得10
8秒前
原始人完成签到,获得积分10
9秒前
LPP完成签到 ,获得积分10
9秒前
9秒前
10秒前
龙泉完成签到 ,获得积分10
10秒前
bbd完成签到,获得积分20
10秒前
11秒前
李健的小迷弟应助安青兰采纳,获得10
11秒前
11秒前
11秒前
11秒前
zlw发布了新的文献求助10
12秒前
斯文败类应助Nov采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784462
求助须知:如何正确求助?哪些是违规求助? 5682526
关于积分的说明 15464250
捐赠科研通 4913580
什么是DOI,文献DOI怎么找? 2644772
邀请新用户注册赠送积分活动 1592662
关于科研通互助平台的介绍 1547148