Urban flow prediction with spatial–temporal neural ODEs

计算机科学 灵活性(工程) 深度学习 人工神经网络 人工智能 卷积神经网络 流量(计算机网络) 数据挖掘 机器学习 颂歌 钥匙(锁) 艺术 统计 数学 计算机安全 文学类
作者
Fan Zhou,Liang Li,Kunpeng Zhang,Goce Trajcevski
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:124: 102912-102912 被引量:34
标识
DOI:10.1016/j.trc.2020.102912
摘要

With the recent advances in deep learning, data-driven methods have shown compelling performance in various application domains enabling the Smart Cities paradigm. Leveraging spatial–temporal data from multiple sources for (citywide) traffic forecasting is a key to strengthen the smart city management in areas such as urban traffic control, abnormal event detection, etc. Existing approaches of traffic flow prediction mainly rely on the development of various deep neural networks –e.g., Convolutional Neural Networks such as ResNet are used for modeling spatial dependencies among different regions, whereas recurrent neural networks are increasingly implemented for temporal dynamics modeling. Despite their advantages, the existing approaches suffer from limitations of intensive computations, lack of capabilities to properly deal with missing values, and simplistic integration of heterogeneous data. In this paper, we propose a novel urban flow prediction framework by generalizing the hidden states of the model with continuous-time dynamics of the latent states using neural ordinary differential equations (ODE). Specifically, we introduce a discretize-then-optimize approach to improve and balance the prediction accuracy and computational efficiency. It not only guarantees the prediction error but also provides high flexibility for decision-makers. Furthermore, we investigate the factors, both intrinsic and extrinsic, that affect the city traffic volume and use separate neural networks to extract and disentangle the influencing factors, which avoids the brute-force data fusion in previous works. Extensive experiments conducted on the real-world large-scale datasets demonstrate that our method outperforms the state-of-the-art baselines, while requiring significantly less memory cost and fewer model parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我我我发布了新的文献求助10
刚刚
刚刚
刚刚
耶椰完成签到 ,获得积分20
1秒前
善学以致用应助Ryanchow采纳,获得10
1秒前
刘47完成签到 ,获得积分10
1秒前
Cyanide完成签到,获得积分10
1秒前
1秒前
moqituo完成签到,获得积分10
2秒前
河里蹿发布了新的文献求助10
2秒前
领导范儿应助热心幻天采纳,获得10
2秒前
春花发布了新的文献求助10
3秒前
llx完成签到 ,获得积分10
3秒前
无花果应助火星上香菇采纳,获得10
3秒前
徐伟发布了新的文献求助10
3秒前
FashionBoy应助fhl采纳,获得10
3秒前
无极微光应助微风采纳,获得20
3秒前
Antares完成签到 ,获得积分10
3秒前
给我一篇文献吧完成签到 ,获得积分10
4秒前
Tsuki完成签到 ,获得积分10
4秒前
4秒前
4秒前
科目三应助114555采纳,获得10
4秒前
小青椒应助星星采纳,获得50
5秒前
5秒前
科研通AI6应助迷路的寄风采纳,获得10
5秒前
长言发布了新的文献求助10
6秒前
橙汁完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
加油完成签到 ,获得积分10
8秒前
幼稚园扛把子完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
科研通AI6应助唐胜利采纳,获得10
9秒前
孤独的芒果完成签到,获得积分10
10秒前
小幸运完成签到,获得积分10
10秒前
10秒前
河里蹿完成签到,获得积分10
11秒前
关关过应助xin采纳,获得20
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659704
求助须知:如何正确求助?哪些是违规求助? 4829909
关于积分的说明 15088114
捐赠科研通 4818433
什么是DOI,文献DOI怎么找? 2578625
邀请新用户注册赠送积分活动 1533233
关于科研通互助平台的介绍 1491959