Radiomics Nomogram for Predicting Locoregional Failure in Locally Advanced Non–small Cell Lung Cancer Treated with Definitive Chemoradiotherapy

医学 列线图 无线电技术 肺癌 肿瘤科 接收机工作特性 内科学 放射科 放化疗 曲线下面积 比例危险模型 回顾性队列研究 危险系数 预测模型 生存分析 一致性 置信区间 多元分析 放射治疗
作者
Xia Chen,Xin Tong,Qingtao Qiu,Fenghao Sun,Yong Yin,Guanzhong Gong,Ligang Xing,Xiaorong Sun
出处
期刊:Academic Radiology [Elsevier]
标识
DOI:10.1016/j.acra.2020.11.018
摘要

Rationale and Objectives To develop and validate a computed tomography (CT)-based radiomics nomogram for predicting locoregional failure (LRF) in patients with locally advanced non–small cell lung cancer (NSCLC) treated with definitive chemoradiotherapy (CRT). Materials and Methods A total of 141 patients with locally advanced NSCLC treated with definitive CRT from January 2014 to December 2017 were included and divided into testing cohort (n = 100) and validation (n = 41) cohort. Radiomics features were extracted from pretreatment contrast enhanced CT. The least absolute shrinkage and selection operator logistic regression was processed to select predictive features from the testing cohort and constructed a radiomics signature. Clinical characteristics and the radiomics signature were analyzed using univariable and multivariate Cox regression. The radiomics nomogram was established with the radiomics signature and independent clinical factors. Harrell's C-index, calibration curves and decision curves were used to assess the performance of the radiomics nomogram. Results The radiomics signature, which consisted of eight selected features, was an independent factor of LRF. The clinical predictors of LRF were the histologic type and clinical stage. The radiomics nomogram combined with the radiomics signature and clinical prognostic factors showed good performance with C-indexes of 0.796 (95% confidence interval [CI]: 0.709–0.883) and 0.756 (95% CI: 0.674–0.838) in the testing and validation cohorts respectively. Additionally, the combined nomogram resulted in better performance (p Conclusion The radiomics nomogram provided the best performance for LRF prediction in patients with locally advanced NSCLC, which may help optimize individual treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助zhong采纳,获得10
1秒前
型男完成签到,获得积分10
1秒前
小蘑菇应助LmgEaa采纳,获得10
3秒前
万能图书馆应助小木木采纳,获得10
5秒前
JamesPei应助十六采纳,获得10
5秒前
SciGPT应助路漫漫采纳,获得10
6秒前
隐形曼青应助Kyler采纳,获得10
6秒前
寒冷的金鱼完成签到,获得积分10
7秒前
7秒前
激情的代曼完成签到,获得积分10
9秒前
CodeCraft应助zjq采纳,获得10
9秒前
脑洞疼应助伶俐板栗采纳,获得10
9秒前
9秒前
乐观的丹琴完成签到 ,获得积分10
11秒前
11秒前
12秒前
13秒前
eli完成签到,获得积分10
13秒前
关清明完成签到,获得积分10
14秒前
14秒前
称心蓉完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
15秒前
dpp发布了新的文献求助10
17秒前
17秒前
Kyler发布了新的文献求助10
17秒前
小木木发布了新的文献求助10
18秒前
hys33发布了新的文献求助60
18秒前
TY完成签到,获得积分10
18秒前
18秒前
zhong发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
21秒前
21秒前
ZQ发布了新的文献求助10
21秒前
lxz发布了新的文献求助10
22秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416752
求助须知:如何正确求助?哪些是违规求助? 3018587
关于积分的说明 8884468
捐赠科研通 2705811
什么是DOI,文献DOI怎么找? 1483954
科研通“疑难数据库(出版商)”最低求助积分说明 685830
邀请新用户注册赠送积分活动 681049