Export trade, embodied carbon emissions, and environmental pollution: An empirical analysis of China's high- and new-technology industries

中国 污染 自然资源经济学 温室气体 环境污染 环境科学 空气污染 业务 环境技术 环境保护 经济 工程类 废物管理 地理 生态学 考古 生物
作者
Shuhong Wang,Yun Tang,Zehua Du,Malin Song
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:276: 111371-111371 被引量:101
标识
DOI:10.1016/j.jenvman.2020.111371
摘要

China's export trade has been expanding steadily in recent years, significantly increasing resource consumption and environmental pollution. High- and new-technology industries are essential for achieving sustainable economic development and improving environmental quality. This study employs a multi-regional input–output model to estimate the economic benefits and environmental costs of export trade in high- and new-technology industries. Then, it analyzes the impact of economic benefits and technological levels on environmental pollution using the Stochastic Impacts by Regression on Population, Affluence, and Technology model. An input–output multi-objective linear programming model and a non-dominated sorting genetic algorithm II are adopted to combine economic development with environmental pollution and determine the optimal path for export trade. The results show that technological progress in China's high- and new-technology industries is conducive to reducing embodied carbon emissions in developed countries while increasing emissions in developing countries. Moreover, a nonlinear three-stage accompanying relationship exists between the economic benefits and environmental costs of high- and new-technology exports; this is because exports with low economic benefits generate fewer carbon emissions whereas exports with high economic benefits generate significant carbon emissions. An increase in exports with ultra-high economic benefits will generate excessive embodied carbon emissions that hinder coordinated economic–environmental development. Lastly, technological progress in the electrical and optical equipment sector can effectively promote pollution reduction; thus, it should be further developed to improve the comprehensive benefits of exports.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫菜发布了新的文献求助10
1秒前
5秒前
5秒前
独特亦旋完成签到,获得积分20
6秒前
今后应助qqqqqq采纳,获得10
7秒前
小马甲应助飞羽采纳,获得10
7秒前
星辰大海应助西内!卡Q因采纳,获得10
8秒前
8秒前
彬彬发布了新的文献求助10
9秒前
太叔捕完成签到,获得积分10
9秒前
高磊发布了新的文献求助10
10秒前
RH完成签到,获得积分10
10秒前
zhangzhen完成签到,获得积分10
10秒前
11秒前
科研通AI2S应助zfzf0422采纳,获得10
13秒前
Wendy1204发布了新的文献求助10
14秒前
14秒前
lydy1993完成签到,获得积分10
15秒前
16秒前
滴滴哒哒完成签到 ,获得积分10
16秒前
SciGPT应助波波玛奇朵采纳,获得10
18秒前
戏言121完成签到,获得积分10
18秒前
迷人的映雁完成签到,获得积分10
19秒前
19秒前
美丽的之双完成签到,获得积分10
20秒前
阿会完成签到,获得积分10
20秒前
wqm完成签到,获得积分10
21秒前
戏言121发布了新的文献求助10
22秒前
22秒前
23秒前
优雅的流沙完成签到 ,获得积分10
24秒前
猫的海完成签到,获得积分10
24秒前
24秒前
Eason Liu完成签到,获得积分0
25秒前
Wendy1204完成签到,获得积分20
25秒前
Hello应助654采纳,获得10
25秒前
咩咩羊完成签到,获得积分10
25秒前
29秒前
lianqing完成签到,获得积分10
29秒前
汉堡包应助科研通管家采纳,获得10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824