GSSA: Pay attention to graph feature importance for GCN via statistical self-attention

计算机科学 特征(语言学) 图形 人工智能 特征学习 节点(物理) 机器学习 卷积神经网络 模式识别(心理学) 理论计算机科学 数据挖掘 语言学 结构工程 工程类 哲学
作者
Zheng Jin,Yan Wang,Wanjun Xu,Zilu Gan,Ping Li,Jiancheng Lv
出处
期刊:Neurocomputing [Elsevier]
卷期号:417: 458-470 被引量:11
标识
DOI:10.1016/j.neucom.2020.07.098
摘要

Graph convolutional network (GCN) has been proved to be an effective framework for graph-based semi-supervised learning applications. The core operation block of GCN is the convolutional layer, which enables the network to construct node embeddings by fusing both attributes of nodes and relationships between nodes. Different features or feature interactions inherently have various influences on the convolutional layers. However, there are very limited studies about the impact of feature importance in GCN-related communities. In this work, we attempt to augment convolutional layers in GCNs with statistical attention-based feature importance by modeling the latent interactions of features, which is complementary to the standard GCNs and only needs simple calculations with statistics rather than heavy trainings. To this end, we treat the feature input of each convolutional layer as a separate multi-layer heterogeneous graph, and propose Graph Statistical Self-Attention (GSSA) method to automatically learn the hierarchical structure of feature importance. More specifically, we propose two modules in GSSA, Channel-wise Self-Attention (CSA) to capture the dependencies between feature channels, and Mean-based Self-Attention (MSA) to reweight similarities among features. Aiming at each graph convolutional layer, GSSA can be applied in a "plug and play" way for a wide range of GCN variants. To the best of our knowledge, this is the first implementation that optimizes GCNs from the feature importance perspective. Extensive experiments demonstrate that GSSA can promote existing popular baselines remarkably in semi-supervised node classification tasks. We further employ multiple qualitative evaluations to get deep insights into our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
琳琳发布了新的文献求助50
2秒前
啧啧啧完成签到,获得积分10
2秒前
科研通AI6应助瘦瘦的戒指采纳,获得30
2秒前
思源应助Yeeee采纳,获得10
3秒前
Hello应助Chen采纳,获得10
4秒前
谭柠倩发布了新的文献求助10
5秒前
xdwaev完成签到,获得积分20
5秒前
勤恳天问发布了新的文献求助20
6秒前
6秒前
6秒前
7秒前
7秒前
Hou完成签到 ,获得积分10
8秒前
9秒前
10秒前
10秒前
11秒前
Prince发布了新的文献求助10
11秒前
12秒前
深情安青应助Max采纳,获得10
13秒前
13秒前
谢焯州完成签到,获得积分10
13秒前
ERIS完成签到,获得积分10
14秒前
14秒前
hh完成签到,获得积分10
14秒前
打打应助搞怪凝云采纳,获得10
14秒前
盲点发布了新的文献求助10
15秒前
打打应助加减乘除采纳,获得10
15秒前
尊o发布了新的文献求助10
15秒前
15秒前
16秒前
ERIS发布了新的文献求助10
16秒前
17秒前
上官若男应助张小欠采纳,获得10
18秒前
18秒前
18秒前
善学以致用应助GG波波采纳,获得10
18秒前
18秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715