GSSA: Pay attention to graph feature importance for GCN via statistical self-attention

计算机科学 特征(语言学) 图形 人工智能 特征学习 节点(物理) 机器学习 卷积神经网络 模式识别(心理学) 理论计算机科学 数据挖掘 语言学 结构工程 工程类 哲学
作者
Zheng Jin,Yan Wang,Wanjun Xu,Zilu Gan,Ping Li,Jiancheng Lv
出处
期刊:Neurocomputing [Elsevier]
卷期号:417: 458-470 被引量:11
标识
DOI:10.1016/j.neucom.2020.07.098
摘要

Graph convolutional network (GCN) has been proved to be an effective framework for graph-based semi-supervised learning applications. The core operation block of GCN is the convolutional layer, which enables the network to construct node embeddings by fusing both attributes of nodes and relationships between nodes. Different features or feature interactions inherently have various influences on the convolutional layers. However, there are very limited studies about the impact of feature importance in GCN-related communities. In this work, we attempt to augment convolutional layers in GCNs with statistical attention-based feature importance by modeling the latent interactions of features, which is complementary to the standard GCNs and only needs simple calculations with statistics rather than heavy trainings. To this end, we treat the feature input of each convolutional layer as a separate multi-layer heterogeneous graph, and propose Graph Statistical Self-Attention (GSSA) method to automatically learn the hierarchical structure of feature importance. More specifically, we propose two modules in GSSA, Channel-wise Self-Attention (CSA) to capture the dependencies between feature channels, and Mean-based Self-Attention (MSA) to reweight similarities among features. Aiming at each graph convolutional layer, GSSA can be applied in a "plug and play" way for a wide range of GCN variants. To the best of our knowledge, this is the first implementation that optimizes GCNs from the feature importance perspective. Extensive experiments demonstrate that GSSA can promote existing popular baselines remarkably in semi-supervised node classification tasks. We further employ multiple qualitative evaluations to get deep insights into our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助zhuxu采纳,获得10
1秒前
小遇完成签到 ,获得积分10
1秒前
悠悠发布了新的文献求助10
2秒前
MMMV完成签到,获得积分10
3秒前
6秒前
小蘑菇应助高挑的迎夏采纳,获得10
6秒前
tannie完成签到 ,获得积分0
7秒前
隐形珊完成签到,获得积分10
9秒前
希望天下0贩的0应助niniyiya采纳,获得10
9秒前
10秒前
10秒前
11秒前
Orange应助圈圈采纳,获得10
13秒前
aa完成签到,获得积分10
14秒前
愉快若剑发布了新的文献求助10
15秒前
Godlove发布了新的文献求助10
15秒前
kkk发布了新的文献求助10
16秒前
18秒前
酷波er应助方法采纳,获得10
19秒前
20秒前
Godlove完成签到,获得积分10
21秒前
21秒前
打打应助kkk采纳,获得10
22秒前
Jared应助小鱼头采纳,获得10
23秒前
24秒前
飞快的孱完成签到,获得积分10
26秒前
李爱国应助慕木采纳,获得10
26秒前
fengfeng发布了新的文献求助10
27秒前
psg完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
浮游应助求神拜佛采纳,获得10
29秒前
浮游应助求神拜佛采纳,获得10
29秒前
29秒前
sdfgv发布了新的文献求助10
31秒前
加菲丰丰举报外向的灵槐求助涉嫌违规
31秒前
完美世界应助百宝采纳,获得10
32秒前
高挑的迎夏完成签到,获得积分10
35秒前
Chris发布了新的文献求助10
36秒前
yiteng完成签到,获得积分10
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633720
求助须知:如何正确求助?哪些是违规求助? 4729357
关于积分的说明 14986552
捐赠科研通 4791560
什么是DOI,文献DOI怎么找? 2558957
邀请新用户注册赠送积分活动 1519405
关于科研通互助平台的介绍 1479650