GSSA: Pay attention to graph feature importance for GCN via statistical self-attention

计算机科学 特征(语言学) 图形 人工智能 特征学习 节点(物理) 机器学习 卷积神经网络 模式识别(心理学) 理论计算机科学 数据挖掘 语言学 结构工程 工程类 哲学
作者
Zheng Jin,Yan Wang,Wanjun Xu,Zilu Gan,Ping Li,Jiancheng Lv
出处
期刊:Neurocomputing [Elsevier]
卷期号:417: 458-470 被引量:11
标识
DOI:10.1016/j.neucom.2020.07.098
摘要

Graph convolutional network (GCN) has been proved to be an effective framework for graph-based semi-supervised learning applications. The core operation block of GCN is the convolutional layer, which enables the network to construct node embeddings by fusing both attributes of nodes and relationships between nodes. Different features or feature interactions inherently have various influences on the convolutional layers. However, there are very limited studies about the impact of feature importance in GCN-related communities. In this work, we attempt to augment convolutional layers in GCNs with statistical attention-based feature importance by modeling the latent interactions of features, which is complementary to the standard GCNs and only needs simple calculations with statistics rather than heavy trainings. To this end, we treat the feature input of each convolutional layer as a separate multi-layer heterogeneous graph, and propose Graph Statistical Self-Attention (GSSA) method to automatically learn the hierarchical structure of feature importance. More specifically, we propose two modules in GSSA, Channel-wise Self-Attention (CSA) to capture the dependencies between feature channels, and Mean-based Self-Attention (MSA) to reweight similarities among features. Aiming at each graph convolutional layer, GSSA can be applied in a "plug and play" way for a wide range of GCN variants. To the best of our knowledge, this is the first implementation that optimizes GCNs from the feature importance perspective. Extensive experiments demonstrate that GSSA can promote existing popular baselines remarkably in semi-supervised node classification tasks. We further employ multiple qualitative evaluations to get deep insights into our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英姑应助123采纳,获得10
刚刚
彭于晏应助漫漫采纳,获得10
刚刚
希望天下0贩的0应助guozizi采纳,获得10
1秒前
郝誉发布了新的文献求助10
1秒前
刘刘刘完成签到 ,获得积分10
1秒前
稳重盼夏发布了新的文献求助10
2秒前
zx发布了新的文献求助10
2秒前
天真之桃完成签到,获得积分10
2秒前
邓佳鑫Alan应助害羞的天真采纳,获得20
2秒前
3秒前
zjyzjyzjy发布了新的文献求助10
3秒前
wanci应助cookingmouse采纳,获得10
3秒前
3秒前
4秒前
5秒前
牛牛牛牛牛牛牛牛完成签到 ,获得积分10
5秒前
酷酷伟宸发布了新的文献求助10
6秒前
陈小明发布了新的文献求助10
6秒前
沉静傻姑发布了新的文献求助10
6秒前
法外狂徒发布了新的文献求助100
7秒前
呼吸自然发布了新的文献求助20
7秒前
小鲨鱼发布了新的文献求助10
7秒前
xinran完成签到,获得积分20
8秒前
顾矜应助狗东西采纳,获得10
8秒前
纪你巴完成签到,获得积分10
8秒前
小樊啦完成签到 ,获得积分10
10秒前
10秒前
牛大锤完成签到,获得积分10
10秒前
所所应助春风明月采纳,获得10
11秒前
七月完成签到,获得积分20
12秒前
12秒前
嘿哈哈完成签到,获得积分10
12秒前
胡俊豪发布了新的文献求助10
13秒前
13秒前
科研通AI6应助Elite采纳,获得10
13秒前
共享精神应助qiii采纳,获得10
13秒前
14秒前
向北游完成签到,获得积分10
14秒前
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277