GSSA: Pay attention to graph feature importance for GCN via statistical self-attention

计算机科学 特征(语言学) 图形 人工智能 特征学习 节点(物理) 机器学习 卷积神经网络 模式识别(心理学) 理论计算机科学 数据挖掘 语言学 结构工程 工程类 哲学
作者
Zheng Jin,Yan Wang,Wanjun Xu,Zilu Gan,Ping Li,Jiancheng Lv
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:417: 458-470 被引量:11
标识
DOI:10.1016/j.neucom.2020.07.098
摘要

Graph convolutional network (GCN) has been proved to be an effective framework for graph-based semi-supervised learning applications. The core operation block of GCN is the convolutional layer, which enables the network to construct node embeddings by fusing both attributes of nodes and relationships between nodes. Different features or feature interactions inherently have various influences on the convolutional layers. However, there are very limited studies about the impact of feature importance in GCN-related communities. In this work, we attempt to augment convolutional layers in GCNs with statistical attention-based feature importance by modeling the latent interactions of features, which is complementary to the standard GCNs and only needs simple calculations with statistics rather than heavy trainings. To this end, we treat the feature input of each convolutional layer as a separate multi-layer heterogeneous graph, and propose Graph Statistical Self-Attention (GSSA) method to automatically learn the hierarchical structure of feature importance. More specifically, we propose two modules in GSSA, Channel-wise Self-Attention (CSA) to capture the dependencies between feature channels, and Mean-based Self-Attention (MSA) to reweight similarities among features. Aiming at each graph convolutional layer, GSSA can be applied in a "plug and play" way for a wide range of GCN variants. To the best of our knowledge, this is the first implementation that optimizes GCNs from the feature importance perspective. Extensive experiments demonstrate that GSSA can promote existing popular baselines remarkably in semi-supervised node classification tasks. We further employ multiple qualitative evaluations to get deep insights into our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助DRHSK采纳,获得10
刚刚
WANGJD发布了新的文献求助10
1秒前
1秒前
露露露完成签到,获得积分10
1秒前
2秒前
小黑子fanfan完成签到,获得积分10
2秒前
小二郎应助dyd采纳,获得10
2秒前
玲玲完成签到,获得积分10
3秒前
TTYYI完成签到 ,获得积分10
3秒前
122319完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
song发布了新的文献求助10
3秒前
Maestro_S应助jyyg采纳,获得10
3秒前
4秒前
asd_1发布了新的文献求助10
5秒前
单纯板栗发布了新的文献求助10
7秒前
浮游应助Raye采纳,获得10
7秒前
波波完成签到,获得积分10
7秒前
7秒前
夜尽天明应助琪哒采纳,获得10
7秒前
8秒前
8秒前
咸鱼发布了新的文献求助10
8秒前
8秒前
善学以致用应助WANGJD采纳,获得10
9秒前
PigaChu发布了新的文献求助10
9秒前
Haries完成签到,获得积分10
9秒前
tlc_191026完成签到,获得积分10
9秒前
小伍同学完成签到,获得积分10
10秒前
伊雪儿完成签到,获得积分10
10秒前
科研通AI2S应助077采纳,获得10
11秒前
杨知意完成签到,获得积分10
11秒前
nightmoonsun发布了新的文献求助10
12秒前
柚子发布了新的文献求助10
13秒前
13秒前
13秒前
在水一方应助吴帆采纳,获得10
14秒前
高分子物理不会完成签到,获得积分10
14秒前
Jessica完成签到,获得积分20
14秒前
善学以致用应助clone2012采纳,获得30
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426