亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GSSA: Pay attention to graph feature importance for GCN via statistical self-attention

计算机科学 特征(语言学) 图形 人工智能 特征学习 节点(物理) 机器学习 卷积神经网络 模式识别(心理学) 理论计算机科学 数据挖掘 哲学 语言学 结构工程 工程类
作者
Zheng Jin,Yan Wang,Wanjun Xu,Zilu Gan,Ping Li,Jiancheng Lv
出处
期刊:Neurocomputing [Elsevier]
卷期号:417: 458-470 被引量:11
标识
DOI:10.1016/j.neucom.2020.07.098
摘要

Graph convolutional network (GCN) has been proved to be an effective framework for graph-based semi-supervised learning applications. The core operation block of GCN is the convolutional layer, which enables the network to construct node embeddings by fusing both attributes of nodes and relationships between nodes. Different features or feature interactions inherently have various influences on the convolutional layers. However, there are very limited studies about the impact of feature importance in GCN-related communities. In this work, we attempt to augment convolutional layers in GCNs with statistical attention-based feature importance by modeling the latent interactions of features, which is complementary to the standard GCNs and only needs simple calculations with statistics rather than heavy trainings. To this end, we treat the feature input of each convolutional layer as a separate multi-layer heterogeneous graph, and propose Graph Statistical Self-Attention (GSSA) method to automatically learn the hierarchical structure of feature importance. More specifically, we propose two modules in GSSA, Channel-wise Self-Attention (CSA) to capture the dependencies between feature channels, and Mean-based Self-Attention (MSA) to reweight similarities among features. Aiming at each graph convolutional layer, GSSA can be applied in a "plug and play" way for a wide range of GCN variants. To the best of our knowledge, this is the first implementation that optimizes GCNs from the feature importance perspective. Extensive experiments demonstrate that GSSA can promote existing popular baselines remarkably in semi-supervised node classification tasks. We further employ multiple qualitative evaluations to get deep insights into our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gexzygg应助科研通管家采纳,获得10
7秒前
12秒前
linlinliu发布了新的文献求助30
17秒前
1分钟前
kale123完成签到,获得积分20
1分钟前
gexzygg应助Li采纳,获得10
1分钟前
1分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
jasonwee发布了新的文献求助10
2分钟前
3分钟前
3分钟前
Jasper应助单薄水星采纳,获得10
3分钟前
3分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
4分钟前
Gryff完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
zxcvvbb1001完成签到 ,获得积分10
6分钟前
gexzygg应助科研通管家采纳,获得10
6分钟前
gexzygg应助科研通管家采纳,获得10
6分钟前
gexzygg应助科研通管家采纳,获得10
6分钟前
gexzygg应助科研通管家采纳,获得10
6分钟前
gexzygg应助科研通管家采纳,获得10
6分钟前
gexzygg应助科研通管家采纳,获得10
6分钟前
gexzygg应助科研通管家采纳,获得10
6分钟前
Shandongdaxiu完成签到 ,获得积分10
6分钟前
Owen应助安贝的呐喊采纳,获得10
6分钟前
PHD满完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549249
求助须知:如何正确求助?哪些是违规求助? 4634593
关于积分的说明 14634876
捐赠科研通 4576049
什么是DOI,文献DOI怎么找? 2509476
邀请新用户注册赠送积分活动 1485332
关于科研通互助平台的介绍 1456512