GSSA: Pay attention to graph feature importance for GCN via statistical self-attention

计算机科学 特征(语言学) 图形 人工智能 特征学习 节点(物理) 机器学习 卷积神经网络 模式识别(心理学) 理论计算机科学 数据挖掘 语言学 结构工程 工程类 哲学
作者
Zheng Jin,Yan Wang,Wanjun Xu,Zilu Gan,Ping Li,Jiancheng Lv
出处
期刊:Neurocomputing [Elsevier]
卷期号:417: 458-470 被引量:11
标识
DOI:10.1016/j.neucom.2020.07.098
摘要

Graph convolutional network (GCN) has been proved to be an effective framework for graph-based semi-supervised learning applications. The core operation block of GCN is the convolutional layer, which enables the network to construct node embeddings by fusing both attributes of nodes and relationships between nodes. Different features or feature interactions inherently have various influences on the convolutional layers. However, there are very limited studies about the impact of feature importance in GCN-related communities. In this work, we attempt to augment convolutional layers in GCNs with statistical attention-based feature importance by modeling the latent interactions of features, which is complementary to the standard GCNs and only needs simple calculations with statistics rather than heavy trainings. To this end, we treat the feature input of each convolutional layer as a separate multi-layer heterogeneous graph, and propose Graph Statistical Self-Attention (GSSA) method to automatically learn the hierarchical structure of feature importance. More specifically, we propose two modules in GSSA, Channel-wise Self-Attention (CSA) to capture the dependencies between feature channels, and Mean-based Self-Attention (MSA) to reweight similarities among features. Aiming at each graph convolutional layer, GSSA can be applied in a "plug and play" way for a wide range of GCN variants. To the best of our knowledge, this is the first implementation that optimizes GCNs from the feature importance perspective. Extensive experiments demonstrate that GSSA can promote existing popular baselines remarkably in semi-supervised node classification tasks. We further employ multiple qualitative evaluations to get deep insights into our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粗心的板栗完成签到 ,获得积分10
1秒前
2秒前
LRose发布了新的文献求助10
3秒前
4秒前
远方完成签到 ,获得积分10
4秒前
清爽的梦松完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
HN_litchi_King完成签到,获得积分10
6秒前
忧郁的元绿完成签到,获得积分10
6秒前
熊熊发布了新的文献求助10
7秒前
科研通AI2S应助szy采纳,获得10
7秒前
丰富又槐发布了新的文献求助10
7秒前
Fred Guan应助fan采纳,获得10
7秒前
7秒前
大宋发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
涛哥发布了新的文献求助10
8秒前
ding应助Rosie采纳,获得10
9秒前
南庭发布了新的文献求助10
9秒前
10秒前
Ava应助赎罪采纳,获得10
11秒前
11秒前
凌霄同学发布了新的文献求助10
11秒前
lwh104完成签到,获得积分10
12秒前
冷静发布了新的文献求助50
12秒前
我今停杯一问之应助妮妮采纳,获得20
13秒前
秋半梦发布了新的文献求助10
13秒前
丰富又槐完成签到,获得积分10
13秒前
汉堡包应助LRose采纳,获得30
13秒前
GGBOND发布了新的文献求助20
14秒前
CipherSage应助嗑瓜子传奇采纳,获得10
15秒前
Ava应助zhang采纳,获得10
16秒前
17秒前
涛哥完成签到,获得积分10
18秒前
19秒前
舒心宛亦发布了新的文献求助10
19秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141588
求助须知:如何正确求助?哪些是违规求助? 2792521
关于积分的说明 7803368
捐赠科研通 2448740
什么是DOI,文献DOI怎么找? 1302918
科研通“疑难数据库(出版商)”最低求助积分说明 626665
版权声明 601240