亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GSSA: Pay attention to graph feature importance for GCN via statistical self-attention

计算机科学 特征(语言学) 图形 人工智能 特征学习 节点(物理) 机器学习 卷积神经网络 模式识别(心理学) 理论计算机科学 数据挖掘 哲学 语言学 结构工程 工程类
作者
Zheng Jin,Yan Wang,Wanjun Xu,Zilu Gan,Ping Li,Jiancheng Lv
出处
期刊:Neurocomputing [Elsevier]
卷期号:417: 458-470 被引量:11
标识
DOI:10.1016/j.neucom.2020.07.098
摘要

Graph convolutional network (GCN) has been proved to be an effective framework for graph-based semi-supervised learning applications. The core operation block of GCN is the convolutional layer, which enables the network to construct node embeddings by fusing both attributes of nodes and relationships between nodes. Different features or feature interactions inherently have various influences on the convolutional layers. However, there are very limited studies about the impact of feature importance in GCN-related communities. In this work, we attempt to augment convolutional layers in GCNs with statistical attention-based feature importance by modeling the latent interactions of features, which is complementary to the standard GCNs and only needs simple calculations with statistics rather than heavy trainings. To this end, we treat the feature input of each convolutional layer as a separate multi-layer heterogeneous graph, and propose Graph Statistical Self-Attention (GSSA) method to automatically learn the hierarchical structure of feature importance. More specifically, we propose two modules in GSSA, Channel-wise Self-Attention (CSA) to capture the dependencies between feature channels, and Mean-based Self-Attention (MSA) to reweight similarities among features. Aiming at each graph convolutional layer, GSSA can be applied in a "plug and play" way for a wide range of GCN variants. To the best of our knowledge, this is the first implementation that optimizes GCNs from the feature importance perspective. Extensive experiments demonstrate that GSSA can promote existing popular baselines remarkably in semi-supervised node classification tasks. We further employ multiple qualitative evaluations to get deep insights into our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
白华苍松发布了新的文献求助10
12秒前
YNYang完成签到,获得积分10
17秒前
21秒前
chbsad123发布了新的文献求助10
26秒前
28秒前
34秒前
1分钟前
yshj完成签到 ,获得积分10
1分钟前
NexusExplorer应助怡然远望采纳,获得10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
wzhnb发布了新的文献求助10
2分钟前
2分钟前
2分钟前
白华苍松发布了新的文献求助10
2分钟前
2分钟前
2分钟前
懒回顾发布了新的文献求助10
2分钟前
2分钟前
懒回顾完成签到,获得积分10
2分钟前
3分钟前
忧郁丹彤完成签到,获得积分10
3分钟前
ZYP完成签到,获得积分10
3分钟前
3分钟前
3分钟前
忧郁丹彤发布了新的文献求助10
3分钟前
3分钟前
3分钟前
金沐栋完成签到,获得积分10
3分钟前
3分钟前
白华苍松发布了新的文献求助10
3分钟前
4分钟前
4分钟前
无极微光应助明理丹烟采纳,获得40
4分钟前
4分钟前
4分钟前
4分钟前
白华苍松发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509696
求助须知:如何正确求助?哪些是违规求助? 4604500
关于积分的说明 14489844
捐赠科研通 4539312
什么是DOI,文献DOI怎么找? 2487475
邀请新用户注册赠送积分活动 1469865
关于科研通互助平台的介绍 1442088