氯硅烷
苯乙炔
硅烷化
锌
计算化学
化学
有机化学
纳米技术
材料科学
催化作用
硅
作者
Pan Huang,Zhen Liu,Yunqi Shao,Shifeng Deng,Bo Liu
摘要
The zinc-promoted silylation method is of great importance to synthesize high-performance silicon-containing arylacetylene (PSA) resins in the industry. However, it is difficult to eliminate the accompanied by-product of terminal alkenes due to the lack of mechanistic understanding of the silylation. The initiation of zinc-promoted silylation is facilitated by the interaction between zinc and phenylacetylene. Our DFT calculations indicated that the intermolecular hydrogen transfer of phenylacetylene follows an ionic pathway, which generates a phenylacetylene anion and the corresponding alkene moieties on the zinc surface. The styrene by-product is observed in this stage, with its alkene moieties desorbing as radicals into the solvent under the high reaction temperature. Three possible intermediates of surface phenylacetylene anions were proposed including PhC[triple bond, length as m-dash]C-Zn, PhC[triple bond, length as m-dash]CZnCl, and (PhC[triple bond, length as m-dash]C)2Zn. These carbanion-zinc intermediates undergo an SN2 reaction with Me3SiCl to afford the alkynylsilane on the zinc surface, which is calculated to be the rate-determining step for the zinc-promoted silylation reaction.
科研通智能强力驱动
Strongly Powered by AbleSci AI