DeepMMSE: A Deep Learning Approach to MMSE-Based Noise Power Spectral Density Estimation

噪音(视频) 计算机科学 估计员 噪声功率 噪声测量 噪声地板 数值噪声 光谱密度 梯度噪声 语音增强 最小均方误差 语音识别 人工智能 算法 功率(物理) 数学 降噪 统计 电信 物理 量子力学 图像(数学)
作者
Qiquan Zhang,Aaron Nicolson,Mingjiang Wang,Kuldip K. Paliwal,C.P. Wang
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:28: 1404-1415 被引量:119
标识
DOI:10.1109/taslp.2020.2987441
摘要

An accurate noise power spectral density (PSD) tracker is an indispensable component of a single-channel speech enhancement system. Bayesian-motivated minimum mean-square error (MMSE)-based noise PSD estimators have been the most prominent in recent time. However, they lack the ability to track highly non-stationary noise sources due to current methods of a priori signal-to-noise (SNR) estimation. This is caused by the underlying assumption that the noise signal changes at a slower rate than the speech signal. As a result, MMSE-based noise PSD trackers exhibit a large tracking delay and produce noise PSD estimates that require bias compensation. Motivated by this, we propose an MMSE-based noise PSD tracker that employs a temporal convolutional network (TCN) a priori SNR estimator. The proposed noise PSD tracker, called DeepMMSE makes no assumptions about the characteristics of the noise or the speech, exhibits no tracking delay, and produces an accurate estimate that requires no bias correction. Our extensive experimental investigation shows that the proposed DeepMMSE method outperforms state-of-the-art noise PSD trackers and demonstrates the ability to track abrupt changes in the noise level. Furthermore, when employed in a speech enhancement framework, the proposed DeepMMSE method is able to outperform state-of-the-art noise PSD trackers, as well as multiple deep learning approaches to speech enhancement. Availability: DeepMMSE is available at: https://github.com/anicolson/DeepXi.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心市民小红花应助果实采纳,获得10
1秒前
1秒前
俭朴新瑶发布了新的文献求助10
2秒前
淮雨巷陌发布了新的文献求助10
3秒前
5秒前
彭于彦祖应助hqq采纳,获得30
5秒前
世纪完成签到,获得积分10
6秒前
bonnie完成签到,获得积分10
6秒前
bonnie发布了新的文献求助10
10秒前
11秒前
yuyu完成签到 ,获得积分10
12秒前
淮雨巷陌完成签到,获得积分10
12秒前
老水完成签到,获得积分10
13秒前
zzcres完成签到,获得积分10
14秒前
明亮的犀牛完成签到,获得积分10
14秒前
科目三应助bonnie采纳,获得10
16秒前
研友_VZG7GZ应助littleblack采纳,获得10
16秒前
yznfly应助conlensce采纳,获得30
18秒前
曾会锋发布了新的文献求助10
19秒前
21秒前
后知不觉完成签到,获得积分10
21秒前
FanFan完成签到,获得积分10
22秒前
23秒前
彭于彦祖应助博修采纳,获得200
23秒前
23秒前
24秒前
风趣秋白完成签到,获得积分10
24秒前
26秒前
Hello应助Rossie采纳,获得10
26秒前
小星星发布了新的文献求助10
27秒前
李爱国应助下雨采纳,获得10
27秒前
28秒前
28秒前
SMLW发布了新的文献求助10
28秒前
俭朴新瑶完成签到,获得积分10
29秒前
liuxiaoping发布了新的文献求助10
29秒前
33秒前
littleblack发布了新的文献求助10
33秒前
乐乐应助内向阑悦采纳,获得10
33秒前
来玩的完成签到 ,获得积分10
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507317
关于积分的说明 11135554
捐赠科研通 3239809
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872380
科研通“疑难数据库(出版商)”最低求助积分说明 803150