DeepMMSE: A Deep Learning Approach to MMSE-Based Noise Power Spectral Density Estimation

噪音(视频) 计算机科学 估计员 噪声功率 噪声测量 噪声地板 数值噪声 光谱密度 梯度噪声 语音增强 最小均方误差 语音识别 人工智能 算法 功率(物理) 数学 降噪 统计 电信 物理 图像(数学) 量子力学
作者
Qiquan Zhang,Aaron Nicolson,Mingjiang Wang,Kuldip K. Paliwal,C.P. Wang
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:28: 1404-1415 被引量:119
标识
DOI:10.1109/taslp.2020.2987441
摘要

An accurate noise power spectral density (PSD) tracker is an indispensable component of a single-channel speech enhancement system. Bayesian-motivated minimum mean-square error (MMSE)-based noise PSD estimators have been the most prominent in recent time. However, they lack the ability to track highly non-stationary noise sources due to current methods of a priori signal-to-noise (SNR) estimation. This is caused by the underlying assumption that the noise signal changes at a slower rate than the speech signal. As a result, MMSE-based noise PSD trackers exhibit a large tracking delay and produce noise PSD estimates that require bias compensation. Motivated by this, we propose an MMSE-based noise PSD tracker that employs a temporal convolutional network (TCN) a priori SNR estimator. The proposed noise PSD tracker, called DeepMMSE makes no assumptions about the characteristics of the noise or the speech, exhibits no tracking delay, and produces an accurate estimate that requires no bias correction. Our extensive experimental investigation shows that the proposed DeepMMSE method outperforms state-of-the-art noise PSD trackers and demonstrates the ability to track abrupt changes in the noise level. Furthermore, when employed in a speech enhancement framework, the proposed DeepMMSE method is able to outperform state-of-the-art noise PSD trackers, as well as multiple deep learning approaches to speech enhancement. Availability: DeepMMSE is available at: https://github.com/anicolson/DeepXi.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坨坨西州发布了新的文献求助10
刚刚
彬彬发布了新的文献求助10
刚刚
大模型应助Abao采纳,获得10
刚刚
sfw驳回了苏照杭应助
1秒前
dingdong发布了新的文献求助10
1秒前
别拖延了要毕业啊完成签到,获得积分10
2秒前
2秒前
2秒前
Rrr发布了新的文献求助10
2秒前
dingdong发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
5秒前
yuan发布了新的文献求助10
5秒前
6秒前
cc完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
一一发布了新的文献求助10
7秒前
领导范儿应助Chridy采纳,获得10
7秒前
8秒前
凤凰山发布了新的文献求助10
8秒前
8秒前
孔雨珍发布了新的文献求助10
8秒前
淡定的思松应助通~采纳,获得10
9秒前
9秒前
明亮的八宝粥完成签到,获得积分10
9秒前
mayungui发布了新的文献求助10
9秒前
大型海狮完成签到,获得积分10
9秒前
搜集达人应助科研菜鸟采纳,获得10
10秒前
雨天有伞完成签到,获得积分10
10秒前
蕾子发布了新的文献求助10
10秒前
10秒前
zhui发布了新的文献求助10
10秒前
wanci应助jxcandice采纳,获得10
10秒前
factor发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794