Transfer Learning Convolutional Neural Network for Sleep Stage Classification Using Two-Stage Data Fusion Framework

计算机科学 人工智能 卷积神经网络 睡眠阶段 脑电图 学习迁移 多导睡眠图 睡眠(系统调用) 模式识别(心理学) 特征(语言学) 特征提取 深度学习 机器学习 多导睡眠图 医学 哲学 精神科 操作系统 语言学
作者
Mehdi Abdollahpour,Tohid Yousefi Rezaii,Ali Farzamnia,Ismail Saad
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 180618-180632 被引量:34
标识
DOI:10.1109/access.2020.3027289
摘要

The most important part of sleep quality assessment is the classification of sleep stages, which helps to diagnose sleep-related disease. In the traditional sleep staging method, subjects have to spend a night in the sleep clinic for recording polysomnogram. Sleep expert classifies the sleep stages by monitoring the signals, which is time consuming and frustrating task and can be affected by human error. New studies propose fully automated techniques for classifying sleep stages that makes sleep scoring possible at home. Despite comprehensive studies have been presented in this field the classification results have not yet reached the gold standard due to the concentration on the use of a limited source of information such as single channel EEG. Therefore, this article introduces a new method for fusing two sources of information, including electroencephalogram (EEG) and electrooculogram (EOG), to achieve promising results in the classification of sleep stages. In the proposed method, extracted features from the EEG and EOG signals, are divided into two feature sets consisting of the EEG features and fused features of EEG and EOG. Then, each feature set transformed into a horizontal visibility graph (HVG). The images of the HVG are produced in a novel framework and classified by proposed transfer learning convolutional neural network for data fusion (TLCNN-DF). Employing transfer learning at the training stage of the model has accelerated the training process of the CNN and improved the performance of the model. The proposed algorithm is used to classify the Sleep-EDF and Sleep-EDFx benchmark datasets. The algorithm can classify the Sleep-EDF dataset with an accuracy of 93.58% and Cohen's kappa coefficient of 0.899. The results show proposed method can achieve superior performance compared to state-of-the-art studies on classification of sleep stages. Furthermore, it can attain reliable results as an alternative to conventional sleep staging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑点低一手完成签到,获得积分10
刚刚
刚刚
刚刚
Richard发布了新的文献求助10
1秒前
哈哈完成签到,获得积分20
1秒前
chestnut灬完成签到 ,获得积分10
1秒前
芝士草莓蛋挞完成签到,获得积分10
2秒前
3秒前
我是老大应助Ziyi_Xu采纳,获得10
3秒前
way完成签到,获得积分10
4秒前
功夫发布了新的文献求助10
4秒前
jerry完成签到,获得积分10
4秒前
4秒前
4秒前
qiong253发布了新的文献求助10
5秒前
甜蜜代玉发布了新的文献求助10
5秒前
砚台完成签到,获得积分10
5秒前
冰冷天蝎座完成签到,获得积分10
5秒前
jingjing完成签到 ,获得积分10
5秒前
72发布了新的文献求助10
6秒前
ycg完成签到,获得积分10
6秒前
今天看文献了吗完成签到,获得积分10
6秒前
lin发布了新的文献求助10
6秒前
7秒前
7秒前
xiuxiu完成签到,获得积分20
7秒前
7秒前
Cm发布了新的文献求助10
8秒前
8秒前
锂氧完成签到 ,获得积分10
8秒前
zz完成签到 ,获得积分10
9秒前
9秒前
9秒前
爱马仕完成签到,获得积分10
9秒前
黛宝发布了新的文献求助10
9秒前
9秒前
大生蚝完成签到 ,获得积分10
10秒前
36456657应助碎星采纳,获得10
10秒前
10秒前
Zoe发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
Interest Rate Modeling. Volume 1: Foundations and Vanilla Models 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539582
求助须知:如何正确求助?哪些是违规求助? 3117244
关于积分的说明 9329500
捐赠科研通 2814939
什么是DOI,文献DOI怎么找? 1547364
邀请新用户注册赠送积分活动 720872
科研通“疑难数据库(出版商)”最低求助积分说明 712333