Bioinformatics and machine learning in gastrointestinal microbiome research and clinical application

微生物群 基因组 人体微生物群 人类微生物组计划 计算生物学 生物 肠道微生物群 生物信息学 数据科学 计算机科学 遗传学 基因
作者
Lindsay M. Hopson,Stephanie S. Singleton,J. W. David,Atin Basuchoudhary,Stefanie Prast‐Nielsen,Pavel Klein,Sabyasachi Sen,Raja Mazumder
出处
期刊:Progress in Molecular Biology and Translational Science 卷期号:: 141-178 被引量:7
标识
DOI:10.1016/bs.pmbts.2020.08.011
摘要

The scientific community currently defines the human microbiome as all the bacteria, viruses, fungi, archaea, and eukaryotes that occupy the human body. When considering the variable locations, composition, diversity, and abundance of our microbial symbionts, the sheer volume of microorganisms reaches hundreds of trillions. With the onset of next generation sequencing (NGS), also known as high-throughput sequencing (HTS) technologies, the barriers to studying the human microbiome lowered significantly, making in-depth microbiome research accessible. Certain locations on the human body, such as the gastrointestinal, oral, nasal, and skin microbiomes have been heavily studied through community-focused projects like the Human Microbiome Project (HMP). In particular, the gastrointestinal microbiome (GM) has received significant attention due to links to neurological, immunological, and metabolic diseases, as well as cancer. Though HTS technologies allow deeper exploration of the GM, data informing the functional characteristics of microbiota and resulting effects on human function or disease are still sparse. This void is compounded by microbiome variability observed among humans through factors like genetics, environment, diet, metabolic activity, and even exercise; making GM research inherently difficult to study. This chapter describes an interdisciplinary approach to GM research with the goal of mitigating the hindrances of translating findings into a clinical setting. By applying tools and knowledge from microbiology, metagenomics, bioinformatics, machine learning, predictive modeling, and clinical study data from children with treatment-resistant epilepsy, we describe a proof-of-concept approach to clinical translation and precision application of GM research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
犹豫嚣完成签到,获得积分20
刚刚
刚刚
孟石三完成签到,获得积分10
刚刚
天行健完成签到,获得积分10
刚刚
打打应助我要发论文采纳,获得10
刚刚
赘婿应助温柔而疏远采纳,获得10
刚刚
CDQ完成签到,获得积分10
1秒前
sunshine发布了新的文献求助20
1秒前
zhvjdb完成签到,获得积分20
2秒前
美女发布了新的文献求助10
2秒前
Sun完成签到,获得积分10
3秒前
爱lx完成签到,获得积分10
3秒前
Jarvis完成签到,获得积分10
3秒前
搜集达人应助细心的代天采纳,获得30
3秒前
3秒前
orixero应助知其荣采纳,获得10
4秒前
只想睡大觉完成签到,获得积分10
4秒前
包子发布了新的文献求助10
4秒前
huzi2009发布了新的文献求助10
4秒前
4秒前
hhllhh完成签到 ,获得积分10
5秒前
退役干饭王完成签到 ,获得积分20
5秒前
微笑的天薇完成签到,获得积分10
5秒前
6秒前
苏叶完成签到 ,获得积分10
6秒前
义气的羽毛完成签到,获得积分10
7秒前
施耐德完成签到,获得积分10
7秒前
荟菁完成签到,获得积分10
7秒前
Chris发布了新的文献求助10
7秒前
8秒前
9秒前
神勇的邑发布了新的文献求助10
9秒前
10秒前
Ning完成签到,获得积分10
10秒前
唐唐完成签到 ,获得积分10
10秒前
Isaac完成签到,获得积分10
11秒前
ly发布了新的文献求助20
11秒前
都是应助真理采纳,获得30
13秒前
aileen9190发布了新的文献求助10
13秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
宽禁带半导体紫外光电探测器 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143353
求助须知:如何正确求助?哪些是违规求助? 2794636
关于积分的说明 7811842
捐赠科研通 2450801
什么是DOI,文献DOI怎么找? 1304061
科研通“疑难数据库(出版商)”最低求助积分说明 627178
版权声明 601386