Bioinformatics and machine learning in gastrointestinal microbiome research and clinical application

微生物群 基因组 人体微生物群 人类微生物组计划 计算生物学 生物 肠道微生物群 生物信息学 数据科学 计算机科学 遗传学 基因
作者
Lindsay M. Hopson,Stephanie S. Singleton,J. W. David,Atin Basuchoudhary,Stefanie Prast‐Nielsen,Pavel Klein,Sabyasachi Sen,Raja Mazumder
出处
期刊:Progress in Molecular Biology and Translational Science [Academic Press]
卷期号:: 141-178 被引量:7
标识
DOI:10.1016/bs.pmbts.2020.08.011
摘要

The scientific community currently defines the human microbiome as all the bacteria, viruses, fungi, archaea, and eukaryotes that occupy the human body. When considering the variable locations, composition, diversity, and abundance of our microbial symbionts, the sheer volume of microorganisms reaches hundreds of trillions. With the onset of next generation sequencing (NGS), also known as high-throughput sequencing (HTS) technologies, the barriers to studying the human microbiome lowered significantly, making in-depth microbiome research accessible. Certain locations on the human body, such as the gastrointestinal, oral, nasal, and skin microbiomes have been heavily studied through community-focused projects like the Human Microbiome Project (HMP). In particular, the gastrointestinal microbiome (GM) has received significant attention due to links to neurological, immunological, and metabolic diseases, as well as cancer. Though HTS technologies allow deeper exploration of the GM, data informing the functional characteristics of microbiota and resulting effects on human function or disease are still sparse. This void is compounded by microbiome variability observed among humans through factors like genetics, environment, diet, metabolic activity, and even exercise; making GM research inherently difficult to study. This chapter describes an interdisciplinary approach to GM research with the goal of mitigating the hindrances of translating findings into a clinical setting. By applying tools and knowledge from microbiology, metagenomics, bioinformatics, machine learning, predictive modeling, and clinical study data from children with treatment-resistant epilepsy, we describe a proof-of-concept approach to clinical translation and precision application of GM research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让的莆完成签到 ,获得积分10
1秒前
orixero应助大忽悠家采纳,获得10
2秒前
Pursuit完成签到,获得积分10
2秒前
3秒前
3秒前
李嘉图发布了新的文献求助30
4秒前
5秒前
6秒前
默默犀牛完成签到 ,获得积分10
6秒前
我不困完成签到,获得积分10
6秒前
8秒前
乔一乔完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
唐博发布了新的文献求助10
10秒前
救驾来迟发布了新的文献求助10
11秒前
彪壮的明轩完成签到,获得积分10
13秒前
user123发布了新的文献求助10
13秒前
14秒前
cindy发布了新的文献求助10
15秒前
原地发布了新的文献求助10
15秒前
wangyalei发布了新的文献求助10
17秒前
17秒前
孟古完成签到,获得积分10
18秒前
Ava应助version采纳,获得10
19秒前
20秒前
南宫清涟应助小梦采纳,获得10
20秒前
21秒前
21秒前
海藻发布了新的文献求助10
22秒前
蜡笔小新完成签到,获得积分10
22秒前
22秒前
zcc完成签到 ,获得积分10
23秒前
24秒前
24秒前
田様应助Wiesen采纳,获得10
24秒前
24秒前
默默迎海给默默迎海的求助进行了留言
25秒前
frozen发布了新的文献求助10
25秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
How to Mind Map: The Ultimate Thinking Tool That Will Change Your Life 300
Where and how to use plate heat exchangers 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3702930
求助须知:如何正确求助?哪些是违规求助? 3252702
关于积分的说明 9880766
捐赠科研通 2964806
什么是DOI,文献DOI怎么找? 1625911
邀请新用户注册赠送积分活动 770331
科研通“疑难数据库(出版商)”最低求助积分说明 742899